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The investigation deals with shells with general anisotropy without the
assumptions which are generally made in deriving the basic equations of
classical shell theory. In the case of general anisotropy, it 1s assumed
that there is only one plane of elastic symmetry at each point, namely the
plane which is parallel to the middle surface of the shell,

Using the method of asymptotic integration proposed by Gol'denvelzer
[1 and 2], 1t is shown that the state of stress in an anisotropic shell may
be expressed as the sum of two stress states. The first 1s defined by the
equatlons which are obtained from the fundamental i1terative process; the
second 1is derlved from an auxiliary iterative process.

1. Pundamental equations of anisotropioc slastioity. Some of the results
of classical linear elasticity [3], expressed in terms of general curvi-
linear coordinates §!, are introduced here for subsequent use.

A point in the shell is represented by the position vector
R =r (8, 9 4 0% (87, 9 (1.1)

where the vector T (81, 90%) pertains to the position in the middle surface
of the shell in terms of the curvilinear coordinates 9% n 1s the unit nor-
mal to the middle surface assoclated with the ¢ direction; — h K ¥ < 1 b,
the shell thickness 25, 1s assumed constant. The metric tensors ¢,, and
¢'’ as well as the unit tensor 6!, are expressed in terms of the basic
covariant and contravariant vectors g, and g!, respectively, by Formulas

8 = ;20 gij — g‘lgi’ 5]_1' —_ g"grj

let G43 and baﬂ be, respectively, the tensors of the first and second
quadratic forms of che middle surface. Then the following relations hold
among the various geometric quantities which characterize the shell and its
middle surface [3]:

g, =0R/30% =8,  —0%,0)a,, g =0R/3%=n (1.2)
Eap = Ggg— 20%, 5 + (B3P0 b5, £,5=0. g5 =1 (1.3)
Q= 8,80, g=lg;l a=]|a,| (1.4)

& =1—0% 4 (0K,  K=Dbb?—bjbg? ®=7Vg/la

k69



470 L. A. Agalovian

Here X 1is the (aussian curvature of the middle surface; b; is the
mixed form of the second fundamental tensor baﬁ' . Here and hereinafter Qreek
indices range over the values 1 and 2 whereas Latin indices range over the
values 1, 2 and 3.

Let us introduce the covarlant strain tensor vy,, and the contravariant

stress tensor ¢!? . The first is expressible in terms of the displacement
vector U as follows: .
Tij = Y2 (& OU /087 4 g;0U | 90) (1.5)
In absence of body forces, the equilibrium equations take the form
arisant =0 (T'=V¢ c"jgj} (1.6)
It is convenient to introduce here the asymmetric stress tensor Tt}
T, = (r"‘ah + ,risn) Vs, = (6“7‘ . ﬁsbp‘") 9, 3 = §sid (1.7
The combination of (1.6) and (1.7) ylelds
B0 = 1 (g, — 03, ), st = 1% = i (1.8)
In view of the symmetry of ¢!!, we have
¢ ('8 — B%2eP) =0, v = g% (1.9)
Here 2y is an antisymmetric tensor with components
€ = ¢ =0, Clg == — (91 = Va (1.10)
Taking into account {1.7), the equilibrium equations (1.6) may be transformed
into VJ“&* bfr’s +8r33 /3{}3 =0, V,.‘Vus'!- baa""w 4. 7% ;‘603 =0 (1.1i1)
where V, represents covariant differentiation in the metric of the middle
surface [4) VAA“B = 0A%8 [ 30> 4. rP‘aiAp.B + I‘MBA“*"‘
DAy =04, /00 —T ¥4, V,A%=04"/00* $T 54% ,A=204/00" (1.12)
Tp,* = 2,805/ 08" = 1/:2%* (dagy / 00" + Ba, | 80F — dag, 1 50%) (1.13)
We now write the displacement vector U 1in the form
U =u'a, —Wn {1.18)

Taking into account (1.5), we obtain
2'\';5 = Vdua + Vg, + Zb“BW — 03 [b;;' (T auy + 03 W) + bi (VBuA + b;.BW)]
27gs = — VW + b u, + du /80" — 80,006, 1 08°, 1,y =— W 28"
In general curvilinear coordinates, the stress-straln relations [3] are
given by = F rs — F T84 8
Tij = LajrsS  for Vi3 =570, 8x, (1.16)

Here, the elastic constants Fj} 1in an arbltrary curvilinear coordinate
system are related to the constants 74 of an orthogonal coordinate system

by the relations o g . 5
W o ab 8™ & TPt
Let us consider an anlsotropic elastic body having one plane of symmetry
at each point (13 independent constants). Assume that the plane of elastic
symmetry 'ls everywhere parallel to the plane {3 = 23 = const.

Then 2 By
FR=RE=PReRE RP-RPeRPory=0 (01

(1.15)

(147

The relations {1.16) may be transformed with the aid of {1.18) and (1.3)
into
— A ; A A B 3
Tap ""Fuﬁ%sigap'*‘ F.’Eaﬁg- Tag = Fagh"&gﬁu"{“ Fo3Sh Yoy = Fga"038z, + Fago3 (1.19)

Substituting (1.8) into (1.19), we obtain
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(1.20)
Orup = Fop' 85,0 (0, — 8%0,) b F P, 015 = F3’%ge, + FRv™ (g, — 8%;,)
015y = Foptay 7 (a,, — 8%b,)) + Fiir™
In particular, for an isotropic body
FI* =[(1 +0)/ E1 878} —o/ Eg"g;; (1.21)

Here £ 18 Young's modulus, and ¢ is Poisson's ratio. Thus, (1.20) ia
reduced to the well known relations for an isotropic body.

With the aid of (1.15), (1.20) may be rewritten in the following form:
— BOW [ 38° = F J¥ge 7% (a,5 — 8%,,) + F I
Yafh (— T W + bluy B,/ 86° — 8%bL0u, / 68°) = (1.22)
=F %%, 4 F % (ap, — 0%;,)
138 (V gt 4 Vtig + 2b,gW — 03 [b3 (V0 + b, W) +
+$ bﬁ (Vguy $oygW)} =F cﬁ“lzp"b (2, — 03”-1) +F apsa‘a

2. Transformation of the fundamenital.relations. The equilibrium equa-
tions il.n , together with symmetry relations (1.9) and stress-strain rela-
tions (1.22) oconstitute a complete system of differential equations, defining
displacements and stresses.

j'I'.o mtegr;:xe‘e :his system, let us introduce a new system of independent
variables de
R #* = Rt*, 0 =hng (2.1)

Here R 4is a characteristic radius of curvature of the middle surface,
and 2x 1s the shell thickness. We will assume that the state of streas
varies rapidly as a function of @3, only‘ whereas the variation of stresses
and displacements as funotions of ¢€!, and ¢ is not too rapid. Then
(1.9), (1.11) and (1.22) take the form

By T — h*Rb P 4 0t [0 =0, AV, T 4 h*Rb v v /0L =0
(2:2)
Op (P —1*RIAF) =0, A =1" —p RPN (B =h/R)

Here V., = RV, represents covariant differentistion with respect tofs,

Stress-strain relations . It is clear from (1.17)
that the F{4 depend not only on the physical constants characterizing the
mechanical properties of the material, but on the coordinate system as well.
For an isotropic material, the physical properties of the material are inde-
pendent of direction. Therefore, as (1.21) shows, the physical constants in
this case appear simply as scalar multipliers, not involving the metric ten-
sor, This fact simplifies calculations considerably, since, upon transfor-~
mation into a new coordinate system by means of (2.1), the dependence of
various quantities on the small parameter A* is immediately clear, provided
that the metric tensor is known. In the anisotropic case, on the other hand,
the situation is different. Here, the physical and geometric directions are
not aligned with each other, since the physical properties vary with direc-
tion, so that (1.17) can no longer be written in the form of (1.21) or some
similar form in which the physical and geometrical properties would be sepé-
rated. While this makes cgmpuutions considerably more difficult, the d4if-
ficulty is not insurmountable. As (1.17) shows, the quantities F;j,obtained
in transforming into a new coordinate system will contain the smli
h*., Let us expand these quantities in power series of A" (in many cases
these series may have a finite number of terms), 1.e. let

=8 s=S
Al Al 3
FCBP' = 20 htlpual‘-(l)' Fa? — ;o h.spazam
8= e

s=8 =8
Fs;ﬁ = thtlpszﬁ(l)' anp — go ht'pagﬂ(') (2.3)
8= s
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Utilizing (2.1) and (2.3), (1.22) may be written as

8=8 8=S
_% "’a_vé’ =h* [ D R FBE B g B pep M Og, TP (av,\—h*gRbM)}
8=0 8=Q
YpR1G (— h*7 /W  B*Rb Puy 4 duy | O, — h*LRbLOu, [ 00) =
8=S 8=8 )
= h* [ D) haeF (30 B, 4 DY RO SO (o, — h‘Rng,‘)} (2.4)
§=0 8=0
YaR18 {Vp'u, + V ug -+ 2Rb oW — LRR* [63 (Vo uy, + RBy W) +
s=8 8=S
+ b} (Vgup + RbgW)]y = 3 R*F 3%, 7 (0 | — h*RED,) + 20 BF 5%
8=0 8=

Here, in accordance with (1.3), (1.4) and (2.1), g,; and ¢ are given as
fap = Gap — Zh*REb g + RULARWN ;. & = 1 — RERD) 4 hH0RIK (2.5)

Boundary condiltilons . Assume that there are applled
stresses 3¢ and 1%, acting on the external and internal shell surfaces
4% = 4k and that, per unit area of the shell's middle surface, these stres-

8es are 733 = i 1/2P. 134 — j’_‘ I/ZPa (26)

3. PFundamental iterative process. The 1lterative process used was devel-
oped by Gol'denveizer in [1 and 2].

The procedure which permits the determination of the fundamental stresses,
i.e. those stresses which do not generally attenuate rapidly with distance
from the shell boundaries, will be termed the fundamental 1terative process.
Let Q be some stress component, and V some displacement component. We
will seek solutions to (2.2) and (2.4) in the form

s=8 §=S
Q= 517 > B*Q V= h}r S hepe (3.1)
=0

8=0

Here it is assumed that Q) =0, v =0 for s< 0;; the integers r
are different for different streas and displacement components. The various
r must be chosen after substituting (3.1) into (2.2) and (2.4). The choice
must be such that equating to zero the coefficlents of llke powers of h*
yields a consistent sequence of systems of equatlions for the coefficients in
the power series (3.1). Such a set of r 418 referred to as a consistent set.

We choose the 7 as follows (the integer » 18 as yet undetermined):
T“B_>r=u+1, (1“3, 1:33)_;r=x, (% s W)y—sr=x41 (3.2)

Substitution of (3.1) into (2.2) and (2.4) and taking into account (3.2),
yilelds the following system of equations for the determination of the power
series coefficients in (3.1):

Vo w8 — BRI\ 4 073 0L = 0, Y, t0d,) + Rbagvih + 0105 /=0

(s~

A A A
orp %) F — REB)T 25,1 =0, T =1 — BRI, (3.3)

— R-1W) ) g7 & to)aw eV | 9t — LBRKOW D) 1 o = F 3303, +
o+ F I G4 FPMeR e+ + Fogt [ag a7, —
— LR (agyboy P 205, 7,5 + LPR® (b, by <+ ,0b5b,0) Tiesn) —

— TORb, b\ T - PP e+
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1,R- {—VQ'W(S'I) + Bb;‘u‘\(s‘” + a“a(s) /8L — z_;m;au;’-l) j8L] — . (3.4)
- 83
— A+ Yy HHERK L - ey = Fad®® logy7 5 — 2RO +
3 A3(k) ..
+ LERIb, T 5] + F O (a0 & — Rl T 14+ PP L e+

YaR {71 + Vg, + 2R g\ — LR (b (7,0 + Ry W) +
+ B (T, 4 Ry W]} — b} (- - Yoty + HERE A - ey =

. Ev 1
= F 3+ {awav,;(s,ﬁ" — LR (ag,b,p + 2a,b5,) Teyy T

3
o L2R? (2b;, by + 34,b5b,0) T2y — LR, nbﬂr(s;‘);, +...0+
8 3 a3 .
$ PO Yyt F P00 4 F P Ry

Here and hereinafter the symbol [... l(s——k}! with k= 1,2,+.+. | represents
the expression contained in the immedlately preceding brackets with &
replaced by (s — x).

As one might expect, Equations {3.3) coinclide with the corresponding equa-
tions for isotropic shells, whereas Equations (3.4) are essentiaslly different
from the corresponding i1sotropic ones, The orthotropic and isotropic shell
equations may be obtained as special cases of (3.4).

Setting Fj; = Fi! =0 and F3 =0, in (3.4), leads to the corresponding
orthotroplce shell equations. ItJ we set

F o h ) =[(1 3-0)/ E} 8}6% — (s / B} a’¥a,g

in 23.5) a result which may be obtained by neglecting terms containing n*
in 1.215, we obtain an equation which c¢oincides with the corresponding 1so-
tropic shell equation [1].

The leading system of equations in (3.3) and (3.4) 1s given dy
) 33 % 3 A3
VaToy + 07 10, =0, Rbogry) ™ + 01,10 =0, g0y =0, 7" =7
WO 13t =0, 6u,l"/=0 (3:5)
11,R-1 [Va'"s(o) + vﬂ'qu’ + ZRbaBW(O)] =F uﬁ“(o)“gp“vﬁ(o)gv

By making use of boundary conditions (2.6), Eguations (3.5) are readily
integrable with respect to { . For this purpose, (2.6) will be written in

the form §=8 s=8
a * \
P = 32(,’ R*P o\, p= SZO h**pg) (3.6)

Integration of (3.5) with respect to (¢ then ylelds
WO = (0 («él' 22), ua(o) — ,,R(o) (EJI: gﬂ), CAQT((})AB =0, 1(0)3;‘ = r(o)kﬁ
. _ B 33 __
Voo F =—1Pqf  Rbut)® = — Wb, Por="utPlhy 1y =lpy
s I Y v
1,81 [T, 2" + V2,0 + 2Rb, W] = Fﬁgi*fmawaﬂ_rm;" 3.7

Equations (3.7) comprise a complete sgrstem of differential equations inde-
pendent of ( and containing ¢' and #£* as the independent variables, with
T(A!g" T?ok), »(& and z:‘(xo)' a8 the unknown functions. It is apparent from (3.7)
that the stresses TSS do not vary over the shell thickness. 8Such & state
of stress is closely related to the membrane state of stress of classical

anisotropic shell theory [5].
Consider Equations {2.2) and (2.4) with the homogeneous boundary condi-

tions
> Pyy* =Py ==0 (3.8)

It may be directly verified that in this case there exista another form
of the series of expansion (3.1) with"the following consistent set of values

of r :
Par=x41, () or=x (4, W)or =x42 (3.9
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Substituting (3.1) and (3.9) into (2.2) and (2.4) and requiring that the
sums of coefficlents of like powers of »* vanish, we obtain again Equations
(3.3), but (3.3) 18 replaced by the following equations:

— R13W™ | 87 + Lb)aW1) s ot — LBRKOW - 9% = F ol S
Cp PRy B RO M ag,0,7(s 5 — LR (a.,b,, =+ 2a,3by,) Toom +
+ DR 2y by + 0,080,0) 7,5 — DR®Eb, T S+ -+ F* M ]

R — T, WED & RbMu, Y oy @ /a; LRbMOu, (V) o] —
L[ - Ly TADRK [ . Joay = Fay@ lag (v, 2, ¢ 7,5 —
—LRbg, (2v,%) + 7, %) + URWD, 1 B+ ..+ F L0 oy ¥ -+ (3.10)
1R (Tug ) + Vg'u,® + 2Rb W — LR (5} (V, ) b Rb, WD) 41
4 by (Vgw, 8™ 4 Rby WOED)} — ygbd (.}, gy b UsPRKL - gy =
=F p"'( ) lag -x"(-g) — LR (ag b,y + 2a,,b;) "(.3) +
+ PR (2bg,byn + avlbﬁcblm) Tty — PRBD, b 1+
o R F MOy PO B R B0 B

Consider the zeroth approximation in (3.3) and the zeroth and first appro-
ximations in (3.10)

Voo P+ vl /8 =0, Rb g2 o) + 37" 1 9L =0, g0 =0
"(o)” - 1(0)13' oW o =0, O /8=0, Vgu, LIS v/ '“5(0) + 2RbaaW(°)= 0
oW o =0, ou M oL — 7, WO R @ =0 (3.11)
YR {7, ug™ + Vg'u" + 2RbgW ) — LR (B (V, O+ REIWO)
+ 8 (v,'u,f"’ 4 Rby WO} = F 300, a7 )"

s clear from that T() 1s a nmar function of ( , so that
o, iﬂ(& E') + b( Intemtm; (3.11) and taking into account (3 8),
w( ’ 1.e. is a homogeneous function of ( . Note ¢

f\;rlt.‘l':er Mtegx'ation of (3 h) and application of boundary conditions (3 8)
yields

WO = 5O (£, g2), "a(o) - ,‘(o) &L ), VB"’a(o) 4 Vm,%(o) + 2Rb¢p"’(°) =0
Wi =0 €L, £9), u, W =1 (7, W — Rb v, ) (3.12)
YR [V, (VB'W(O) — Rbﬁ'h(o)) $ Vs (V,"w(o) — Rb:”l(o)) _—
— RBM (V1,0 $ Rb, 0™ — Rb2 (V52,0 4 Rb, %)) = Fog™ag, 0,78
TP =NA—D VIR ™ =R Rogrg P IL (43)

By comparison with the analogous isotropic shell cases 1t is easily seen
that Equations (3.12) and (3.13) define a state of stress which is closely
related to the pure membrane sute of stress of classical anisotropic shell
theory.

It is also important to note that in the works bf Ambartsumian and others
[5], the form of the stresses 3 , as given in (3.13) or in more general
form, is assumed; here, it is obtained from asymptotic integration of the
equations of elasticity, thus providing proof of the above mentioned assump-
tions (within the limits of accuracy of those theories).

4, BStates of stress with.s greater degree of variation. Consider states
of stress and strain, which vary rapidly as functions of {1 and ¢3% in
addition to their rapid variation as functions of {3 . These states will
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be represented in the forms
3
9" =E°R /K, 0’ =ht (4.1)

and we will assume that the variation of stresses and strains as functions
of (g , 8%, () 1s not great. Here, K(;)is a dimensionless constant which
1s large compared to unity and which incresses in -uutuP. as the variation
m the lta_su of stress and strain mcreuu. Pollowing L6), we let

® with ¢ =p,/q,, where is the exponent of the varistion

1n ‘:ho 1 dire tions whil and ll. Sre positive integers. Introducing
tz-anlror-tlon ?l.l) into zl 12), we obtain

RV, A% = K5, A%, RY\A, =Ky By 4e
Ty A% =04 | 3} 4 (T, 54" + T 34 R/ Ky (4.2)
VL.A; =84,/ o — rc’iApR K )
With the aid of (4.1) and (4.2), Equations (1.11), (1.9) and (1.22) become
L] ” L ]
K 0V o x"® — h*RD Py 4 .?ST =0, KK 0V, 7 + h*Rb gt + i;g_ =0

orp (P — B LRB NP =0, =1 — n{RBIH

=8 =8
- % %_ Be [2 ROF B0 1 S} pe P20 (g, < () — b* ;Rb“)]
=0
VaR19(— K () Vo W + h*Rb}u, + du, | 8] — h*REb30u, [ 8) = (4.3)
=8 =8
=ht [ ) BF 5 O+ ) B0F 3O oy, — hGRb, )]
$=0 =0
YsR=10 (K()Vp g + K (a) Vi Up + 2b,pRW — B*RE [0} (K7, 4y + Rby W) +
=8 s=afS
+ BA (K (g, Vp up + RbgW) = D) he'F B em o 3\ potF J* Clg, <™ (a,, — h*RID,,)
8= =0

Consider a state of stress having the same exponent of variation in doth
ooordmt: directions. Assume, moreover, that the exponent of variation is
nongero, i.e,

E—4 ‘ — 1 == —
- Ky=K=0 ry=1ty=t=rlg
Let 1 = (h%) " menoe

h* =17 =1’ 4.4
Consider & case with large variation, 1 when ¢ > i(a > g), and assume
that p < q(t< 1) . We seek a solution of ?h 3) in the form
=8 =8
Q=1 D} Q. V=oq 3 n*v® (4.5).
=0

=0
Here, as in (3.1), @ 413 = typloal stress, while V¥V 1is a typical strain.

In this case there are two different consistent sets of values of r .
The first is given by

™ sr=ntg Moar=xtp, Wor=x$P—oyg,
Uy > r=x+q— p, Wor=x+20—2p (4.6)

The system of equations corresponding to (4¥.6) is
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3,7 ()™ + 0B ) 0L — Rbbr )™ + BTy 576 0™ + T lr ()1 =0 4.7

047 ()™ 4 011 85 + RT 37, )™ -+ Rbyg¥(0 ) =0

crp [T (e — LRbYY (1 =0, TP =1 P — LRbAT,, P2

(S) " {s-q)

— R10W) [ of + LRoW =D / of — LRKOW 2D [ ot = F 3 Oy (mp-m, +...
g (k)T(S+4p-4r1—k'1) Foe o Pyt O lagua 016 ap ) —
—RE (az w —"vxbau) Toorap- sq)] + RA2 (beubur + 8000Eb0,) T5hp-aq) —
— R, byToviaps] -+ Faa™ Pl Lopgy =+ -
YoR [— 3,W® 4 81 19T 4 RbIu, =D — REbAAw, D [ L] — by [+ )g_gy +
HLPRK (-~ - Ls-aq) =F® [af.kr%sawp-w) - “QRbilt(swmsq) +
+ LR, T35, 4r1)] +Foy @ 10T gp-ag) — ERVeAVishapag)] - - -
RS o R CR) FARVORY P
1,R {%ua(s) + aauﬁ(S) — 2RFa§up.(s-p) + 2RdeW(s*q'2p) —
— RC.[b;(aauA(s-Q) — RI‘u",':uiL(s‘p"” + RbMW(S‘Zm) + b:‘,_ (aBuA(S-Q) —
—_ Hpg;\tup(s—rv-q) + Rb)\sW(S_ZP))]} — 1/2@;: {-+*Ysmqy + HEPRK (- o2y =
=F g @ [ay,0,7 % — LR (ag,b,, + 20,505,) T3 0™ + L3R (a,,b8b,, +
+ Qbap- vA)T(S—aq) ~— R Cababa}»bvi‘(s 31) ] +.. FaEMk) (- '](s-kq) -

33 (0),.3 e 33 (k). 33
ot Faﬁ (s+2p 2q) +ooHF af ( )T(s+2p-2q—kq) +...

The second consistent set of r 1is

™8 r=utgq P or=x+p W or=xut+2p—gq
Uy —r=%-+q—p, Wonlrlx+2¢9—2p (4.8)

The leading system of equations of the correspondi sequence is (because
of its cumbersomness, only the leading system is giveg% (4.9

A 3A __ 23
347 o)A =0, 8,75+ 01, P/ 0 =0, 7P =0, T =7

WO [or =0, u,®/aL=0, iR [8guy® + 8,up @)= F 3" Vaz a7

When P = ¢ , the consistent set of velues in (li 6) remains applicable.
but the equations obtained in this case are different

8,7 ™ + 07, P J 0L+ R [T 5v P+ T B )] — Rbfr, =0
0T )™ 4 87 %/ 0 + RT, 273 -+ Rbygt ™ =0 (4.10)
oxg [t — E;Rba-r(s_p)“a 1=0, T =10 — LRET ()"
— R-10W®) j 8F + [broW ) [ o — [2RKOWS-3P) [ 6t = F 32 Oy (38 4o,
b BB 4 RO (g a1 5 — LR (a5, 2a,bg,) Ty +
+ R22 (by, b, + a,;b8 bw)-r(s_zp)a"- RIBED, by g™+ -
L LA TS PR SR
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. Ao (0-2) (%.10)
YaR-1[— 3, W™ 4 du ) 1 8L -+ RbYu, P — RLBL0u, P/ oL] ~ cont.

e M CR ](g-p) + Y *RK [ -+ }(s—zp) = Faga © [‘aEl‘r(S)Es - 2€B6El"(ﬂ‘?)£8 +
+ ERED, T ] + P2 @ [agy 1™ — LBy -
+...Fa;'3( o Yookpy F - -

215 R (Bu ) 4 8, ug () — 2RT Bu C-P) 4 2Rb WP — RE [b] (3,7 ~
- RF,‘{up_(s'zp) + RbMW(s-zp)) + bi (aﬁufs-m - Rppgup‘(a—zp) + Rb, gw(S—ipl)}} —
— I/SCbk - Yo-p) +VLDRK (- Vouzp) = F, M" ) [aElb v)‘r(‘i‘)' —
— LR (agubyy + 28,505, Toupy™ -+ 2R (0,080, + 2bgubia) Tia-gp) —
—R¥begh, b ,v (s_miv] 4o+ Fa;)aM )’ ) S O 4+ F“%i% (o),(s)sa NI
R | S PR
It 1s easily shown that the state of stress defined by the first approxi-

mation in Equations (4.7), (4.9) and (4.10) 1s equivalent to that obtained
from classical theory for large values of the exponent of variation.

5. Auxiliary iterative prooess. Conslder a state of stress having dif-
ferent variations in the ! and {% directions, ¥For definiteness, suppose
that the greater variation takes place in the §! direction. Assume that
K(l) = h¥* 1 = 1, while K(ﬁ) = ﬂﬁ_

We will show that the state of stress in this case 1s essentially differ~
ent from the case considered above. Let

Ol = Ri*tl, O*=RE, °=h (5.1)
We now seek & solution to (4#.3) in the form given in (4.5). Then there
are two consistent sets of r . The first one is
(T1F, 28, 198, 1%L ) L r =% — 4, (113, 7%, 128, 1) o re=n
(yy W) r=%—2, uy—>r=x—1 (5.2)
This set corresponds to the following system of equations:
611(,) + aﬁr(s) + R [(Zl‘li + )T(S_l)ll + Pzat(s—l)m} + H [(2P )’r(.) + (5_3)

+ Paria] — REITG,) Rbi‘?z) oy’ X =0
e gy 8T (p_g) ™ + RT3 + 2750 1oy -+ T ey
F T (agy (Tgq + 2Tg9) + T Je( gy — RUT( g — ROGES | 4+ 07,32/ 8L = 0
3% )" + 0t )P+ R () + Ty vy + BY )P (T + T +
+ R (bn"(,_nu + bsf‘«-..u”)}'*‘ R (blzt(g)lz + bzﬂ'(,)ﬂ) + &‘(3)33/ ag = 0

cu‘r(,) "'- 0311'(3) _ gR {012 (bl’f(s_l) + bl‘f(s_z)) + Caq (b‘T(l-—l) + bzf(! 1))] ==

=t — Rl + by inl t@a =15 — 1R il + bk ]

— ROW® [ a7 4 LoV [ o0p — PRKOWED fop =F B OxB 4

R F 33 (k)r 33 + et F M' © [avu-avht(s)w - §R (avp.bv). + 2avkbvp,) T(s-l)w +
+ BRZ (“vxbabup. + 2bvp.bvx )T(s-a) —R gabv bay. vkr(a 3) -
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— LR (@y, by + 203,) T + R (8,300, + 2, bad vy " — 353
— R, baa ¥yl 4+ F W g, F - (+v)
YR [— JW® + Rbku,® 4 3u, ) ) 8, + Rblu Y — LR (bl3u, Y ) 57 +-
+ 8500, 1 000} — YaLb) [+ Jamgy + YOBRK [ Ju_gy = Fi3* @ [y 13
— 20RY , (e 3y + ) + BRW, (12, A2 ) — ERby,Y % +
+ Fl‘:i’t © a-l*‘(:) - cbehf(gix)] +...+ F;;:a & [- '](s-k) +..
1 R-1 [auéa),az — HWis-) +Rb;ul(s'2) + Rb;uz("") —
— RE B0 100 4 6J0u ™ [ 0] — Yk [+ Yooy + Yol RK [+ ] gogy =
= F M@ laprily — 2R Bty + 0nTiay) + a7 +
4 L2R: (blbaﬂ(s'.g) + &5 bgAT(;'-g))] + F g3 * O [“1)‘7 =1 =
— LRty + bt T antdyl+ .+ PR ... lo-ny -+
R @, — B (0,07 4 T2, ®) - snRWE™D — (R (6} (3, — R (P, lu, 0 4
+ I‘l?“zcs-l)) + Rb, w3 )+ bz (Oru, ®_p (T e 1 (’"”) +r 3u (“1)) + Rbg W M —
- gb;:("')(s-n + ERK - Yoy = F P (o),('l do (k).r( SIS
e FFOaga,, 1) — LR (6,0, + 28,35, )70 -+
+ SR (2b,b,, + a,bib,e) (4, — LIRS bmbEbP;’r(s_s) — LR (a,,b,, + 20,553t +
-+ L33 (2b,,0 a8k TR, — [3R%,,b; busTaonl + -+ Fy rmp Jagy +- -
VR {8,078 — 200 (D1, @D 4 T 2, 070) + 04, - 2bpoRW D —
— LR (B (01, — R (T 1w, 4T 2,5 oL RoyW (&) 1
+ 8% (B, — R gu, 07 T 5,070 | Rb, W)
+ b} (@) — R (T 3,0 o TyJu, ) + Rbyy W) -
4 03 (0, — R (L5, @ 4 T 0, ) - RonW D)}y — 33 -0}y +
A+ VLERK e Y 2)=F'l;33(°) ?3-1 4+ ... F 33()7(3-1: ot -
b B P P aga,vlt ) — LR (4,5, + Zavi\bvv) 17(n-z) + 2R (20,30, + “vlbvbp-‘.) o) —
— PR BTy Gty T — LR (anubin + 20,0b ) TR +
+ [R? (‘*bvlbm a3 bibg) Viae — BRI Tl 4 Far® ]+
R @, — R (P, 4 T,0u,®) 4 b RWE™ — RE (6] (Bony*™ +
+ R (Fl2u1(e-z) + Pyyu ™) + RbyoW ) 4 b] ‘02"1(8—1) +R (Pa:"I(H) +
4 T2u,0"0) + RbaaW )] — L83 (-« Yy + ERK LY qqy = F 2 OgPit .
A mf JTE PR F 0 [a 0 v — LR (a,bn + 2a,5by) 7T +
4 LTHE (Shyybyy, + ,5b5b,e) Ty — DR, Dby T, Ty — LR (gubyy 20,30 ) Yo
+ LR (b b, 2 a05be) Tty — CR b Byt lgl + e+ P ®r- '](--l)‘+ e
(n+v)
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When an orthogonal coordinate system is used for the middle surface of
the shell, then , . . .
a; =0, Ij=0 (EFjsEri)
and the system of Equations (5.3) becomes considerably simplified.
The second consistent set of r 1s given by
(T, 1%, 18, 8, ) r=%, (P, LB, 1) = —1{
(ui,W)—vr=K-~f, uz""‘)r=x"'2
Corresponding to this set there 1s also a sequence of systems of equations,
obtained in the manner descrided above. In view of their cumbersomeness,
only the leading system of equations is given (5.4)
.11 .81 __ 12 22 1 %
vyt 07, L =0, ATy 4+ BTy, +H(1"21-{—2[‘“)1(0)"+Rl“§rm“_
2. 13 32 . .81 __ 1
—Rbjrg P+ gy [0 =0, T =T A+ v,/ =0

Yo =T — RN, enTgy - eat(g) — LR [enblr 't + enbit gy =0
— R- —F % A A
RGW ) [ 8 = F Pt 34 F 0¥ mamal,;rm)“ + F e (°>a,p_anr(,,)"

VR [— WO 4 0u{ [ 8] = F 3 Oar ) + £, O,z

1R [ — ;W + 01, 1 3¢ + Rb1u,©® — REbjdu, ™  87] =
A n
=F a‘;l © (“s?ﬁ‘m)sa - %beﬁ(a}m’ +F zg © (“sxf(o)sz - §Rb 1&7(0) )

- Ao, L
R0 = F{O% o+ F NOapa,70"

1/,R1 {3231(0) —2 Ry];ul(ol + a;u.;‘” 4 2b RWO ;m,:alul(ml — pl?’m (l)av AT (G)W —
33(1), 83
— TRF ¥ O (a,,b,, + 22,3,,) Ty + F 2y To" + Fi’ Ve M+
A w_
F 32 O 5+ Fot ®a,8,,%0)" =0

if, in the preceding Equations (5.%4), we let
F3 ®—1/E, p3§;r» 0 — g/ Ea**, [,'31;7\ ©® =1 +0)/ E] 6’;
F @ =1(1+0)/ E]8;
FBO — _g/Ean, E O =[1+0)/E] &8
FO = [(1 4 )/ E] §"! —c/Ed¥ay
F %0 =25 ) ELRbpa*™, FB ) =25/ EtRby, FBO =g/ Fayn

F 3+ O =[(1 4 6)/ E} 8)6f — 6/ Ea**az, a;=0 (for isJ)

then these equations reduce to the isotropic shell equations [1].

For the zeroth approximation, .the second, fourth, sixth, ninth and ele~
venth equations in (5.3) comprise a self-contained subsystem in terms of
't(g, 1(201), t'(g?. 'r(?,f, and u(? corresponding essentially to the classical prob-

lem concerning torsion of an anisotropic bar about the ¢*-axis, The first,
third, fourth, seventh, eighth, tenth and twelfth equations in (5.%) comprise

a self-contained subsystem in terms of t:;)' T?:), t?g) 1}3},1'?;)' 1,
and W, These equations correspond essentially to the plane strain problem
in the g'¢ plane.

The stress and strain
as the sum of two strese end strain states,

states for an anisotropic shell may now be written
obtained through the fundamental
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and auxiliary iterative processes, and we require that the stresses thus
obtained satisfy the boundary conditions (2.6). In addition to these bound-
ary conditlons, the stresses and displacements thus obtalned must also sat-
i18fy the boundary constraints. Evidently, we ocan combine the fundamental
and auxiliary processes so as to satisfy the shell boundary conditions to
any desired accuracy. This problem has been studied in detail in connectlon
with plates [2], but requires separate examination for shells,

The author 1s grateful to S.A., Ambartsumian for his valuable suggestions,
and thanks A.L. Goldenvenveizer for reviewing thls work.
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