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The investigation deals with shells with general anlsotropy without the 
aesumptione which are generally made ln deriving the basic equation8 of 
classical shell theory. In the case of general anisotropy, It 18 assumed 
that there is only one plane of elastic symmetry at each point, namely the 
plane which Is parallel to the middle surface of the shell. 

Using the method of asymptotic Integration proposed by Qol'denvelzer 
cl and 23, It I& shown that the state of stress In an anl8otroplc shell may 
be expressed ae the sum of two atrese states. The first Is defined by the 
equations which are obtained from the fundamental iterative process; the 
second Is derived from an auxiliary Iterative process. 

of kasslcal linear elastlclty 133 
BW r~&Wlow of rairo~%o l lut301~. Some of the results 

linear coordinates & , 
expressed In terms of general curvl- 

are introdked here for subsequent use. 

A point In the shell Is represented by the position vector 

R =r(tV, W) + 6% (fY, P) (1.i) 

where the vector r (@s**) pertains to the position In the middle surface 
of the shell In terms of the curvilinear coordinates 6"; n 1s the unit nor- 
mal to the middle surface associated with the 69 direction; - h<f)8< + IL, 
the shell thickness 2h Is assumed constant. The metric tensors g1 and 
0'3 a8 well aa the unit tensor I' 
covarlant and contravarlant vector; 

are expressed In terms of the has i c 
& and g*, respectively, by Formulas 

g,j e &gj* gij = gig3* 6; = g+grj 

I& =a!3 and b,p be, respectively, the tensors of the first and second 
quadratic forma of the middle surface. Then the following relation8 hold 
among the varloua' geometric quantltle8 which characterize the ehell and Its 
middle surface [31: 

(1.2) 

(1.3) 

(1.41 
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Here K la the ltauesian curvature of the middle surface; 
mixed form of the second fundamental teneor b@. 

6: is the 
Hefe and heresnafter Week 

Zndlcee range over the values 1 and 2 whereas Latin Indices range over the 
value6 l,, 2 and 3. 

Let u8 Introduce the covarlant strain tensor Y,, and the contrevariant 
strese tensor o*j 
vector V a8 folloL3: 

The first IS expreaaible in terms of the displacement 

Gj ='iZ(gi au/aits+gj aU/ati') t1.51 
In absence of body forcee, the equilibrium equatione take the form 

C&/&Y=0 CT+ = ~LsosQ~) (f-6) 

It ia convenient to Introduce here the aeymntetric Stress teneor 7') 

T, = (r”a, + z*%) J&, rib = (6,” - 63b,‘) ~8-6, ri3 = 6~“~ (1.7) 

The combination of (1.6) and (1.7) ylelds 

"dp'= "C%nfi - @&j), sifi = $3 = &+3 (i-8) 

In view of the symmetry of uJi, we have 

c&6 -&$=~)=o, F Eda3 - &$P' 
p 

Here CQ Is an antisymmetric tensor with components 

(5.9) 

Cl1 = c*$ = 0, cl* = - C,l = C (1.10) 

Taking Into account(l.?), the equilibrium equations (1.6) may be transformed 
into 

v$K &,Wf&@ /W=O, V,t=3~b,gZ'P~-af33/a631 0 (l-0) 

where V, rapresents covariant dlfferentiatlon in the metric of the middle 
surface 141 

ViAas = cYA”p / 6’0” + l’$AFC + @A’” 

ALAa = 8A, ,’ 6%’ - I’,,wA,, QhAa = aA= / a6” + rlL;Allr, V&A = i3A / 84-i” (1.12) 

f$ =a,aai3~agy=~f,n"~fa~p,ia#Y ~aS~~j~~~-aa~~fa~~) (1.13) 

We now write the displacement vector U In the form 

rJ =u%l,-Wn (1.14) 

Taking Into account (1.5), we obtain 

2TafJ = V& + Vpa + Zb,pW - w Lb; (V,U& $- b,,W e b; (&“A -r+ ~,pm 
(i-15) 

2’3a3 = - vp -f bd?bA -j- au, i 365 - 63b,kauA f ae3, rs3 = - aw I aeJ 

In general curvilinear coordinates, the stress-strain relations 133 are 
given by 

rij = Iiijrsors for Tij = Fip;g~s (1.16) 

Here, the elastic constants F;; in an arbltrary curvilinear coordinate 
system are related to the constants S:j of an orthogonal coordinate system 
by the relations 

Q aP a@ a@* p~'S=-_-.- ij a** 89 ai a2 - sp; (1.17) 

Let UB consider an anisotropic elastic body having one Plane of Symmetry 
at each point (13 Independent constants). Asaune that the plane of elastfc 
symmetry *is everywhere parallel to the plane 6s = ~8 =L? con&. 

Then &i'" 2= FiT I Fj$ = I$ F 59=F$bF,f+F$ ~0 
?p 

(1.28) 

The relations (1.16) may be transformed with the aid of (1.18) and (l-3) 
Into 
r 4 =F,;l"crEg + Fa$%;, x EP y as ==Fb3 3+&Za + F,Fa:, rss -F W6Qb-)r 93 8 ( 33 F +s8 1.19) 

Substltutlng (1.8) into (1.19), we obtain 
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(1.20) 

%El = Fa~gEpfEv (avX - bBbv,,) + P,$cJ3, Ofoa = FbygEk + FzitSE (I+~ - e3bzk) 

%3 = FZgt$” (a”& - *Sb,J + Fmv 

In particular, for 8n l8ofroplc body 

F$ = [(I + 6) / E] 8:6; - U I E<*g*j (i.21) 

Here B 18 Young's modulus, and u 18 P01880n~s ratlo. Thus, (1.2O)l.8 
reduced to the well mown relatlonr for 8n isotropic body. 

With the aid of (1.15), (1.20) may be rewritten ln the followlng form: 

-iMw/1%3 =F&Pg5P4"(a"x -4b"~) + F$P 

'/,f.j (- v,W + bx,uh -p au, / MS - 6’b$u, J iMa) = (1.22) 
= F ztbgu + F a\sg (a a3 s3 Eh - ft’bd 

‘la* W&+Vp u,-W,,$V- Wb;!Vouafh,W- 

W:E7pA+b,pW)1~ =T,~E?~,s%,~ --3h,)+ FaC3'~ 

4. Tr8lu?or?mrtlon of the tuabuwtital. rolatlonw . 

t j 

The equilibrium equa- 
tions 1.11 , together with r-try NlatloM (1.9) Md 8tPe88-&rain rela- 
tlon8 1.22 amstltute a oamplete 8y8ter OS differential equationa, defining 
dl8placements and rtre88er. 

To integrate this 8y8tem, let u8 lntroduoe a new 8yprtem of Independent 
variables defined by 

6= =RE", #=hhf (2.11 
Here R 18 a oharaoteristlo radlu8 of oumature of the mlddlc 8ur?ace, 

and 2h is the 8hell thlohrarr. ife will amum that the rtate of stre88 
varies rapidly a8 a fun&ion of 68, onlyi where88 the !WiatlOn of rtresrer 
and dir laoemnts a8 funotlon8 of <', c 
(1.9), P1.11) and (1.22) take the tom 

ud C 18 not too rapid. Then 

h*v,‘TaP - h*Rb 0 P~a3 + ii@ / ap = 0, h’V,‘ra3 + h*Rb,,#@ + ikss I & = 0 

$3 (rhfi - h+Rcb;@) = 0, T” = zM - h*Ry(ati* (h* = h / R) 
(2.2) 

Here 77,' =RV, represents covarlant dl??Wentlatlon with reapact tota. 

Stress -strain relations St ir clear from (1.17) 
that the Fff depend not Only on the phyaloal a&tent8 aharacteriting the 
mechanioal propertIe of the material, but on the ooordlnate system 88 well. 
For an isotropic material, the physloal properties of the raterlal are lnde- 
pendant of direction. Therefore, a8 (1.21) ehowr, the phyrleal oomtants in 
this ca8e appear simply a8 soalar multipllerr, not involving the metric ten- 
ear. This fact simplifies calaulationn aomiderably rince, upori transfor- 
mation into a new coordinate 8y8tem by mean8 of (2.lj, the dependence of 
various quantities on the small paMmeter h* lo lmedlately clear, provided 
that the mctrlc tensor i8 known. In the aalrotropic eaee, on the other h8nd, 
the aituatlon is different. Here,the physlaal and geometrlo directions are 
not aligned with eaah other , rime the phy8iaal propertier vq with dlnmc- 
tlon, 80 that (1.17) uan no longer be written ln the form of (1.21) or 801, 
elmllar form In Whloh the physloal and georatrlaal propertier would be rep&- 
rated. While thl8 maker a mutation8 oomlderably more difficult, the dlf- 
flculty 18 not % in8urmounta le. A8 (1.17) 8hou8, the qu8ntltles J"; ,obMned 
In tramiormlng into a new mordlnete system will aontaln the sarali parameter 
h". Let uu expand these qUMtlt4e8 In power 8erlC8 of h* (in many oases 
these eerie0 may have a finite number 0r term), i.e. let 

(2.3) 
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Utilizing (2.1) and (2.3), (1.22) may be wrftten 8s 

s=S a=S 
6 aw - = h’ -h ay, [ 

2 h*‘Fpt= + x h*sB,ys’gEp+” (avA-h*~Rbv)b) 

s=o s=o 3 
‘/a-‘0 (- h*V,'W -+ h*Rb,‘u, + au, / at - h*gu,;au, / ag) = 

=trR-‘6 it7&, + V.& + 2RbapW - <Rh* [b; (v7,‘uh f Rb,,W) + 
s=s (I=$ 

+ b; iVp’uA + RbApW)]l = x h*“F,h$“‘“‘grl,‘tE’ tavx _ h*R<b,,) + x h*8F,~@‘Tw 
S=O .9=0 

Here, in accordance with (1.3), (1.4) and (2.1), gaB and I? are given as 

gap = nap - 2h*Rcbap $ h*2[aR2b~bphr 6 = I- hVjRb,h + ht2pRaK (2.5) 

Boundary condltlone . A8mme that there are applied 
stresses $a and $3, acting on the external and Internal shell surfaces 
6*= fh and that, p&r unit area of the shell’s middle surface, these stres- 
8es are 

P = & Ilap, z3a = * ‘f2Pa (2.6) 

3. mntel ltrr4tlvo proorrr, The lter-atlve process used wa6 devel- 
oped by Qol ‘denvelzer In [ 1 and 21. 

The procedure which permits the determlnatlon of the fundamental stresses, 
i.e. those stresses which do not generally attenuate rapidly with distance 
from the shell boundaries, will be termed the fundamental Iterative process. 
Let 0 be some stress component, and V some displacement component. We 
will seek solutions to (2.2) and (2.4) In the form 

s=s s=s 

Q = + 2 h"Qt,)t v = _-$ 2 h*'V@) (3.1) 
6=0 s=o 

Here it 1s assumed that 
are different for d fferent 

2 

Q s) E 0, V(“) E 0 for s < 0; ; the integers P 
t s ress and displacement components. The various 

r must be chosen a ter substituting (3.1) Into (2.2) and (2.4). The choice 
murt be much that equating to zero the coefficients of like powers of h* 
yields a conslatent sequence of systems of equations for the coefficients in 
the power series (3.1). Such a set of r le referred to as a consistentset. 

We chooee the r aa follows (the integer n Is as yet undetermined): 

T+-O=*fl, (P* P) -+ r = x, (Urr. R)-+r=xt 1 (3.2) 

Substitution of (3.1) Into (2.2) and (2.4) and taking into account (3.2), 
yields the following system of equations for the determination of the power 
series coefficients In (3.1): 

V,'$ - b;R$:,,-+ q#%= 0, v.,'$tl) + W&$ f &ff+% = 0 

(3.3) 
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Here and hereinaFter the symbol I... f(~---X)r with k = 1, 2* l * s represents 
the expreaeion contained in the immediately preceding brackets with e 
replaced by (8 - k). 

As one might expect, Equations (3.3) coincide with the corresponding equa- 
tlons for leotropic shells, whereas Equations (3.4) are eaaentially different 
From the corresponding isotropic ones. The orthotropic and isotropio shell 
equations mayiibe obtained as special cases of (3.4). 

setting i”,s = Fit = 0 and Fz3 = 0, in (3.4), leads to the corresponding 
orthotropic shell equation%. If’ewe set 

F,$@) = [(1-J+ 6) / E] 6;s: - fa [E) ax’La,% 

3.5) a result which may be obtadned by neglecting terms containing h* 
1.21), we obtain an equation which coincides with the corresponding iao- 

tropic shell equation Cl 1, 

The leading system of equations In (3.3) and (3.4) is given by 

~~‘~~~~$ -J- a$) 3% fag = 0, ~~~~~~3~=~ + ~~~~~$3/a~ = 0, c&$ = 0, 7C033k oll ~~~~~~ 

aW"~ / ag = 0, a~,(~) lag = 0 (3.5) 

W-= IV,‘us (O) A- V!$‘U~ co) $ 2Rb,p9 = ,a F aP(o)aEpa~A~$’ 

By making u%e of boundary conditions (2.6), Equations (3.5) are readily 
integrable with respect to C: . For this purpose, (2.6) will be written in 
the form STS 

(3.6) 
8=0 

Integratlon of (3.5) with respect ta C then yields 

J,@O) = to(O) (El, 52). Us(O) = Da(O) (<‘* p), %BTIO) ' M =: 0 %, 
3)1=2 x3 

(0) 

h*t(O) aS=- ~/2p~o~~. ~b~~~~~~~~ = - %P~,, F%II = 1/2V'f,0j, 50) 
3s 
= l~2~~~~ 

V2R-1 IV,& w .J_ Vpp + ZRb,,W@~] = F ‘Pf% afl a T. 4v EPJ *b (0) (3.7) 

Equations (3.7) comprlae a complete alstem of differential equations inde- 
pendent 02 C and contalnlng %,I and 5 as the independent variablea, with 

3b 
-c:$ T(oP w 

09 and $1, as the unknown functions. It is apparent From (3.7) 

that the stresses $$ do not vary over the shell thiokness. Such a state 
of stress is closely related to the membrane state of stress of clasaiaal 
anisotropic ahell theory 153. 

Consider Equations (2-2) and (2.4) with the homogeneata boundary condi- 
tions 

P(,)” = PCS) == 0 (3.8) 

It may be directly verified that in this case there exista another for%~ 
of the sarles of expansion (3.1) with-the Following canalstent set of values 
of r : 

,a@ 4 T =x+1, fP.e+“w-X, (ue, W)er =x+-2 W) 
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Subrtltuting (3.1) and (3.9) into (2.2) and (2.4) and requiring that the 
IUIM 0i coeffiolents of like powers of h* VUllBh, we Obtain again BWatiOn8 
(3.3), but (3.4) 18 replaced by the following equations: 

- R-VW(“) / at + <b$9Wf8”) / ay; - ~“RKBW(‘-*) /iI: = F$(“k~_,j + . , . 

. . . + Fg%(*_~,, $ . . . + P$p [U~llp”~?(~-:; - W (a&, + %.bEp) $;, C 

+ %R* WE&, -I- a&b,,) *&) - 6iRab;$,,,$,,k~,.:~~1 + . - - + F,:pckl [. . ‘l(+k) f . . . 

pet(O) = Cp'*'(e', EZ), q+b"' + v&,(*) + 2Rbafiwfo) - 0 

uo(‘l) =5 c (V/W(~) - Rb$,(*)) (3.12) 

l/&R-l [v,‘(q,‘orEo)- Rb+l’)) + q, (v,‘w(” - Rb);oi”) - 

- Rb; ( Va*u$o) + Rb,,wf’)) - Rb,’ &$‘I$*) + Rbuw(*‘)] = F,p’P(o)~~p~~x~~o~ 

%) = = l/a(i- ce) Rb,BTtojuB / 6 (3.13) 
. 

Bg coeison with the anal ouo lsotropla shell oaeea it 1s easily Been 
that Bqucrtlm (3.12) ard (3.1% define a mtatc of atrtm uhloh 10 ClO8elY 
related to the pure wmbmme state of stress or clawlwl anirotroplo ahell 
theory. 

It ia al80 *rtant to note that in the work6 bf Aabartaumlan and other6 
\5& ?a& fooJB0; wm a-me* P I u given In (3.13) or ln more general 

MIW, It 10 oblalaod from rsJgtotlo integration of the 
e~&loar of cla&ioi~, WWII provlcllag proof or the above mentioned am-- 
tionm (within W_ llmltm of aoauracy of those theories). 

1. atakl of rtro@r with.& mtor d4800 of VWktbXL. Consider state6 
of &ream and strain, which vary rapidly as functlonrr of 01 and W In 
addition to their rapid variation as funatlons of 68 . These state0 will 
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be reprementcd in the form 

iI= = f=wR,,,, 6*=hC W) 

and we will l *aw that the 
of (51, e, c) ia not gre*t. 

var*tion or, atrerwa a rtrati aa funatlona 
Bore, K&m a dirnaioalemr oomtant whioh 

1s laxqp m to unity uid uhloh lnorearer In m@t l 0 the vrrirtion 

the expwwnt of the varlatlon 

RV,A” = K&C7;AaB, R&A. = K(A) 4a ‘A a, . * * 

v;A% 6AQB/e9Ex +~,~A*+F~~A'~)R/K~,;' (4.2) 

V~'A;=8A,lBF;"--r,~A,Rtx~,, 
With the aid of (4.1) ti (4.2), Bquatloru (l.ll), (1.9) md (IS!) koonr 

84 r4 

Conelder a state of strerr having the aut exponent of varlatlon ln both 
aoordlwte direotlons . Amum, moreover, th&t the exponent of variation lo 
aormero, i.e. 

K(Q = K(,) = K = 
Let q = (WUQ. Whenae 

h’ (-‘), t(lj - t(,) - t = p / q 

h+= -4 ‘1. =V K (4.4) 

Conelder l oaae with large variation, 
that p ( 4(&(l) , 

1. 
We seek a rolutlon of P 

. when : * HP > e), ubd avow 
4.3) ln tlw form 

Bere, 

(4.5) l 

rtraln. 
In thla aaee theru are two different oonalrtent ret0 of valwwr of r . 

The flrrt 14 given by 

TaB --, r - K + q, TQS - r - x + p, rt3,r==x+2p-q, 
u~-+r~x+q-pp. w-,r=x+2q-2p (4.6) 

The oyet&m or equatlone aomaponding to (4.6) ir 



The second consistent set of r Is 

rap Ar=X+q, P-+r=x+p, 2934r=x+2p-q 

ua-Pr=x+q-p, w ---f x < r < x + 2q - 2p (4.8) 

The leading system of equations of the correspond1 
“pi 

sequence 1s (because 
of lte cumbersomness, only the leading system la @fen (4.9) 

a a~Cojafi -t- tiCoj3p / ag = 0, aazcola3 + a~$3 / ac = 0, %B~(O) ’ 
v =() 

r(o)3h = Z(O) 
x3 

aW@) / ag = 0, au,(O) / ag = 0, lp-1 [aBtiaco) -j- a,+O)] = Folp (“)~sc~vA~~o~ 

men p I q , the consistent set of values In (4.6) remains applicable. 
but the equations obtained in this case are different 

. . . i: F + Ck) [. . ‘]@+)) + . . . 
33 



It la easily shown that 
matlon in Equations (4.71, 

the state of stress defined by 
(4.9) and (4.10) Is equivalent 

from classiaal theory for 1 arge values of the exponent of 

the first approxi- 
to that obtained 
variation. 

8. 1Luxiflu7 lwa@8Clrr ~00888 l Consider a state of stress having dlf- 
fefent variations in the #f and 6" directions. For definiteness, suppose 
that the greater variation takes place in the 61 direction. Assume that 

% = h*“’ = 11, while K,,, = ~0. 

We kill show that the state of stress in this case is essentially differ- 
ent from the case conglidered above. Let 

6’ = Rh*%l!, 6% = R%a, 6s = hf (5.0 
We now seek a solution to (4,3) fn the form giwn in (4.5). Then there 

are two conelatent seta of r . The first one 1s 

(95 +, ?i@, $+I, 58) -4 r = ?c - 1, (T’S, r=, $8, 3%) - r = x 

f%c W -+r=x-2, uz-+r=x--1 (5.2) 
Thla set core to the following system of equations: 
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then these equatlona reduce to the isotropic shell equations cl]* 
For the ZCrOth a prOXlTMtlOn, .the second, fourth, sixth, ninth and ele- 

tenth eWatlOn8 in P 5.3) com~wise a Self-eontalned subsystem in tern of 
$$* rg, ttz* $* and i$’ corresponding essentf@lly to the claeslcal prob- 
lem concerning torsion of an i%n~e&roplc bar about tha 5*-axis. The firat, 
third, fourth, seventh, eighth, tenth tin twelfth equationa In (5.4) comprise 
a eclf-oontalned subayatem in terme of GP % ?= CO> $>’ 7 &* =1 

(0) 

& f@f. These equations correspond essentially to the plant strain woblem 
in the SIC plane. 

me etreee & &rain states for w an.laotPopl~ shell mag non be mitten 
WJ the WIB of two stress and strain &ate0 I obtained through the fundax!UMItal 
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and auxiliary iterative processes, and we require that the stresses thus 
obtained satisfy the boundary conditions (2.6). Ln addition to these bound- 
ary conditions, the stresses and displacements thus obtained must also sat- 
isfy the boundary constralnta. Evidently, we oan combine the fundamental 
and auxlllary processes so as to satlsfy the shell boundary conditions to 
any desired accuracy. This problem has been studied In detail In connection 
with plates 123, but requires separate examination for shells. 

The author is grateful to S.A. Ambartsumlan for his valuable suggestions, 
and thanks A.L. Golhenvenvelzer for reviewing this work. 
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