APPLICATION OF THE METHOD OF ASYMPTOTIC INTEGRATION TO THE CONSTRUCTION OF AN

 APPROXIMATE THEORY OF ANISOTROPIC SHELLS

 APPROXIMATE THEORY OF ANISOTROPIC SHELLS}

PMM Vol.30, N2 2, 1966, pp.388-398
L.A.AGALOVIAN
(Yerevan)

(Received March 30, 1965)

The investigation deals with shells with general anisotropy without the assumptions which are generally made in deriving the basic equations of classical shell theory. In the case of general anisotropy, it is assumed that there is only one plane of elastic symmetry at each point, namely the plane which is parallel to the middle surface of the sheli.

Using the method of asymptotic integration proposed by Gol'denveizer [1 and 2], it is shown that the state of stress in an anisotropic shell may be expressed as the sum of two stress states. The first is defined by the equations which are obtained from the fundamental iterative process; the second is derived from an auxiliary iterative process.

1. Truanmptral equations of anisotropio olagtioity. Some of the results of clasisical inear elasticity [3], expressed in terms of general curviIInear coordinates θ^{i}, are introduced here for subsequent use.

A point in the shell is represented by the position vector

$$
\begin{equation*}
\mathbf{R}=\mathbf{r}\left(\theta^{1}, \theta^{2}\right)+\hat{\theta}^{\sin }\left(\theta^{1}, \hat{\vartheta}^{2}\right) \tag{1.1}
\end{equation*}
$$

where the vector $\mathbf{r}\left(0^{1}, \hat{\theta}^{2}\right)$ pertains to the position in the middie surface of the shell in terms of the curvilinear coordinates $\theta^{\alpha} ; n$ is the unit normal to the middle surface associated with the $\hat{\theta}^{3}$ direction; $-h \leqslant \boldsymbol{\theta}^{3} \leqslant+h$, the shell thickness $2 h$ is assumed constant. The metric tensors σ_{i} and $g^{1!}$ as well as the unit tensor δ^{1}, are expressed in terms of the basic covariant and contravariant vectors t_{1} and B^{1}, respectively, by Formulas

$$
g_{i j}=g_{i} g_{j}, \quad g^{i j}=g^{i} g^{j}, \quad \delta_{j}^{i}=g^{i r} g_{r j}
$$

Let $a_{\alpha \beta}$ and $b_{\alpha \beta}$ be, respectively, the tensors of the first and second quadratic forms of the middle surface. Then the following relations hold among the various geometric quantities which characterize the shell and its middle surface [3]:

$$
\begin{align*}
& \mathbf{g}_{\alpha}=\partial \mathbf{R} / \partial \theta^{\alpha}=\left(\delta_{\alpha}{ }^{\lambda}-\theta^{3} b_{\alpha}{ }^{\lambda}\right) a_{\lambda}, \quad g_{s}=\partial \mathbf{R} / \partial \theta^{8}=\mathbf{n} \tag{1.2}\\
& g_{\alpha \beta}=a_{\alpha \beta}-2 v^{3} b_{\alpha \beta}+\left(\theta^{3}\right)^{2} b_{\alpha}{ }^{2} b_{\beta \lambda}, \quad g_{\alpha 3}=0, g_{33}=1 \tag{1.3}\\
& a_{\alpha \beta}^{\dot{\alpha}}=\mathrm{a}_{\alpha} \mathrm{a}_{\beta}, \quad g=\left|g_{i j}\right|, \quad a=\left|a_{\alpha \beta}\right| \tag{1.4}\\
& \theta=1-\hat{\theta}^{8} b_{\lambda}{ }^{2}+\left(\theta^{8}\right)^{2} K, \quad K=b_{1}{ }^{1} b_{2}{ }^{2}-b_{2}{ }^{1} b_{1}{ }^{2} \quad(\theta=\sqrt{g / a)}
\end{align*}
$$

Here K is the Gaussian curvature of the middie surface; b_{α}^{\prime} is the $m 1 x e d$ form of the second fundamental tensor $b_{a \beta}$. Here and hereinafter areek indices range over the values 1 and 2 whereas Latin indices range over the values 1,2 and 3 .

Let us introduce the covariant strain tensor $Y_{1,}$ and the contravariant stress tensor ${ }^{\circ 11}$. The first is expressible in terms of the displacement vector $\overline{0}$ as follows:

$$
\begin{equation*}
\gamma_{i j}=1 / 2\left(g_{i} \partial U / \partial \theta^{j}+g_{j} \partial U / \partial \theta^{i}\right) \tag{1.5}
\end{equation*}
$$

In absence of body forces, the equilibrium equations take the form

$$
\begin{equation*}
\partial \mathbf{T}^{i} / \partial \theta^{i}=0 \quad\left(\mathbf{T}^{i}=\sqrt{g} \sigma^{i j} \mathbf{g}_{j}\right) \tag{1.6}
\end{equation*}
$$

It is convenient to introduce here the asymmetric stress tensor qis 1

$$
\begin{equation*}
T_{i}=\left(\tau^{i \lambda} a_{\lambda}+\tau^{i 3} n\right) \sqrt{a}, \quad \tau^{i \lambda}=\left(\delta_{\mu}^{\lambda}-\vartheta^{3} b_{\mu}{ }^{\lambda}\right) \sigma^{i \mu} \vartheta, \quad \tau^{i 3}=\vartheta \sigma^{i 3} \tag{1.7}
\end{equation*}
$$

The combination of (1.6) and (1.7) y1elds

$$
\begin{equation*}
\theta \sigma_{\beta}^{i}=\tau^{i \lambda}\left(a_{\lambda \beta}-\vartheta^{3} b_{\lambda, \beta}\right), \quad \sigma_{8}^{i} \vartheta=\tau^{i 3}=\vartheta \sigma^{i 3} \tag{1.8}
\end{equation*}
$$

In view of the symmetry of oil, we have

$$
\begin{equation*}
c_{\lambda \beta}\left(\tau^{\lambda \beta}-\vartheta^{3} b_{\alpha}^{\lambda} \tau^{\alpha \beta}\right)=0, \quad \tau^{3 \lambda}=\tau^{\lambda 3}-\vartheta^{3} b_{\mu}^{\lambda} \tau^{\mu 3} \tag{1.9}
\end{equation*}
$$

Here $c_{\lambda \beta}$ is an antisymmetric tensor with components

$$
\begin{equation*}
c_{11}=c_{22}=0, \quad c_{12}=-c_{21}=\sqrt{a} \tag{1.10}
\end{equation*}
$$

Taking into account (1.7), the equilibrium equations (1.6) may be transformed into

$$
\begin{equation*}
\nabla_{\alpha} \tau^{\alpha \beta}-b_{\alpha}^{\beta^{\alpha} \tau^{3}}+\partial \tau^{3 \beta} / \partial \vartheta^{3}=0, \quad \nabla_{\alpha} \tau^{\alpha 3}+b_{\alpha \beta} \tau^{\alpha \beta}+\partial \tau^{33} / \partial \vartheta^{3}=0 \tag{1.11}
\end{equation*}
$$

where ∇_{a} represents covariant differentiation in the metric of the middle surface [4]

$$
\nabla_{\lambda} A^{\alpha \beta}=\partial A^{\alpha \beta} / \partial \theta^{\lambda}+\Gamma_{\mu \lambda}^{\alpha} A^{\mu \beta}+\Gamma_{\mu \lambda^{\beta}}^{\beta} A^{\alpha \mu}
$$

$$
\begin{gather*}
\Delta_{\lambda} A_{\alpha}=\partial A_{\alpha} / \partial \theta^{\lambda}-\Gamma_{\alpha \lambda} A_{\mu}, \quad \nabla_{\lambda} A^{\alpha}=\partial A^{\alpha} / \partial \theta^{\lambda}+\Gamma_{\mu \lambda}^{\alpha} A^{\mu}, \quad \nabla_{\lambda} A=\partial A / \partial \theta^{\lambda} \tag{1.12}\\
\Gamma_{\beta \gamma}{ }^{\alpha}=a_{\alpha} \partial a_{\beta} / \partial \theta^{\gamma}=1 / \alpha^{\alpha} \alpha^{\alpha \lambda}\left(\partial a_{\beta \lambda} / \partial \theta^{\gamma}+\partial a_{\gamma \lambda} / \partial \theta^{\beta}-\partial a_{\beta \gamma} / \partial \theta^{\lambda}\right) \tag{1.13}
\end{gather*}
$$

We now write the displacement vector U in the form

$$
\begin{equation*}
\mathbf{U}=u^{\lambda} \mathbf{a}_{\lambda}-W \mathbf{n} \tag{1.14}
\end{equation*}
$$

Taking into account (1.5), we obtain

$$
\begin{gather*}
2 \gamma_{\alpha \beta}=\nabla_{\alpha} u_{\beta}+\nabla_{\beta} u_{\alpha}+2 b_{\alpha \beta} W-\vartheta^{3}\left[b_{\beta}^{\lambda}\left(\nabla_{\alpha} u_{\lambda}+b_{\lambda \alpha} W\right)+b_{\alpha}^{\lambda}\left(\nabla_{\beta} u_{\lambda}+b_{\lambda \beta} W\right)\right] \tag{1.15}\\
2 \Upsilon_{\alpha \beta}=-\nabla_{\alpha} W+b_{\alpha} u_{\lambda}+\partial u_{\alpha} / \partial \vartheta^{3}-\vartheta^{3} b_{\alpha}^{\lambda} \partial u_{\lambda} / \partial \vartheta^{3}, \quad \gamma_{33}=-\partial W / \partial \theta^{s}
\end{gather*}
$$

In general curvilinear coordinates, the stress-strain relations [3] are given by

$$
\begin{equation*}
\gamma_{i j}=F_{i j r s} \sigma^{r s} \quad \text { for } \quad \gamma_{i j}=F_{i j}^{r s} \sigma_{r}^{k} g_{k s} \tag{1.16}
\end{equation*}
$$

Here, the elastic constants $F i ;$ in an arbitrary curvilinear coordinate system are related to the constants $S_{1} ;$ of an orthogonal coordinate system by the relations

$$
\begin{equation*}
F_{i j}^{r s}=\frac{\partial x^{p}}{\partial \theta^{i}} \frac{\partial x^{q}}{\partial \theta^{j}} \frac{\partial \theta^{r}}{\partial x^{m}} \frac{\partial \theta^{s^{\prime}}}{\partial x^{n}} S_{p 1}^{m n} \tag{1.17}
\end{equation*}
$$

Let us consider an anisotropic elastic body having one plane of symmetry at each point (13 independent constants). Assume that the plane of elastic symnetry is everywhere parallel to the plane $\theta^{3}=x^{3}=$ const.

Then

$$
\begin{equation*}
F_{i j}^{r s}=F_{i j}^{s r}=F_{j i}^{r s}=F_{j i}^{8 r}, \quad F_{\lambda \mu}^{33}=F_{3 \beta}^{\lambda \mu}=F_{3 \mu}^{33}=F_{33}^{33}=0 \tag{1.18}
\end{equation*}
$$

The relations (1.16) may be transformed with the ald of (1.18) and (1.3) into

Substituting (1.8) into (1.19), we obtain

$$
\begin{gather*}
\theta \gamma_{\alpha \beta}=F_{\alpha \beta}{ }^{\lambda \mu} g_{\xi \mu} \tau^{5 \nu \nu}\left(a_{v \lambda}-\theta^{3} b_{v \lambda}\right)+F_{\alpha \beta}^{33} \tau^{33}, \quad \theta \gamma_{\alpha 3}=F_{\alpha 3}^{\lambda 3} \tau^{53} g_{\xi \lambda}+F_{\alpha 3}^{3 \lambda} \tau^{35}\left(a_{\xi \lambda}-\theta^{3} b_{\xi \lambda}\right) \tag{1.20}\\
\theta \gamma_{33}=F_{33}{ }^{\lambda \mu} g_{\xi \mu} \tau^{E \nu}\left(a_{v \lambda}-\theta^{3} b_{\nu \lambda}\right)+F_{33}^{33} \tau^{33}
\end{gather*}
$$

In particular, for an isotropic body

$$
\begin{equation*}
F_{i j}^{r s}=[(1+\sigma) / E] \delta_{i}^{r} \delta_{j}^{8}-\sigma / E g^{r s} g_{i j} \tag{1.21}
\end{equation*}
$$

Here \boldsymbol{F} 1s Young's modulus, and 0 is Poisson's ratio. Thus, (1.20) is reduced to the well known relations for an isotropic body.

With the aid of (1.15), (1.20) may be rewritten in the following form:

$$
\begin{align*}
& -\theta \partial W / \partial \theta^{3}=F_{33}{ }^{\lambda_{\mu}} g_{\xi_{\mu}} \tau^{\Sigma \nu}\left(a_{v \lambda}-\theta^{3} b_{v \lambda}\right)+F_{33}^{28 \tau^{38}} \\
& 1 / \Omega \theta\left(-\nabla_{\alpha} W+b_{\alpha}^{\lambda} u_{\lambda}+\partial u_{\alpha} / \partial \theta^{3}-\theta^{3} b_{\alpha}^{\lambda} \partial u_{\lambda} / \partial \theta^{3}\right)= \tag{1.22}\\
& =F_{a 3}{ }^{23} \tau^{\xi_{s} g_{\xi \lambda}}+F_{a 3}{ }^{3 \lambda} \tau^{3 \varepsilon}\left(a_{\xi \lambda}-\theta^{z} b_{\xi \lambda}\right) \\
& 1 / 2 \theta\left\{\nabla_{\alpha} u_{\beta}+\nabla_{\beta} u_{\alpha}+2 b_{\alpha \beta} W-\vartheta^{3}\left[b_{\beta}^{\lambda}\left(\nabla_{\alpha} u_{\lambda}+b_{\lambda \alpha} W\right)+\right.\right. \\
& \left.\left.+b_{\alpha}^{\lambda}\left(\nabla_{\beta} u_{\lambda}+b_{\lambda \beta} W\right)\right]\right\}=F_{\alpha \beta}^{\lambda \mu} g_{E \mu} \tau^{E \nu}\left(a_{\nu \lambda}-\theta^{3} b_{\nu \lambda}\right)+F_{\alpha \beta}{ }^{33} \tau^{23}
\end{align*}
$$

2. Transformation of the fundamontel. relations. The equilibrium equations (1.21), together with symmetry relations (1.9) and stress-strain relations (1.22) constitute a complete system of differential equations, defining displacements and stresses.

To integrate this system, let us introduce a new system of independent variables defined by

$$
\begin{equation*}
\theta^{a}=R \xi^{\alpha}, \quad \theta^{3}=h \zeta \tag{2.1}
\end{equation*}
$$

Here R is a characteristic radius of ourvature of the middle surface, and $2 h$ is the shell thickness. We will assume that the atate of stress varies rapidiy as a function of 0^{3}, only whereas the variation of stresses and displacements as functions of $5^{1}, \xi^{\prime}$ and 6 is not too rapid. Then (1.9), (1.11) and (1.22) take the form

$$
\begin{gather*}
h^{*} \nabla_{\alpha}{ }^{\prime} \tau^{\alpha \beta}-h^{*} R b_{\alpha}^{\beta} \tau^{\alpha 3}+\partial \tau^{\beta \beta} / \partial \zeta=0, \quad h^{\star} \nabla_{\alpha^{\prime} \tau^{\alpha 3}}+h^{*} R b_{\alpha \beta} \tau^{\alpha \beta}+\partial \tau^{33} / \partial \zeta=0 \\
c_{\lambda \beta}\left(\tau^{\lambda \beta}-h^{*} R \zeta b_{\alpha}^{\lambda} \tau^{\alpha \beta}\right)=0, \quad \tau^{3 \lambda}=\tau^{\lambda 3}-h^{*} R \zeta b_{\mu}^{\lambda} \mu^{r^{3}} \quad\left(h^{*}=h / R\right) \tag{2.2}
\end{gather*}
$$

Here $\nabla_{\alpha}^{\prime}=R \nabla_{\alpha}$ represents covariant differentiation with respect to $\xi \alpha_{0}$
stress-strain relations. It is clear from (1.17) that the Fij depend not only on the physical constants characterizing the mechanical properties of the material, but on the coordinate system as well. For an isotropic material, the physical properties of the material are independent of direction. Therefore, as (1.21) shows, the physical constants in this case appear simply as scalar multipliers, not invoiving the metric tensor. This fact simpilifies calculations considerably, since, upon transformation into a new coordinate system by means of (2.1), the dependence of various quantities on the small parameter h^{*} is inediately clear, provided that the metric tensor is known. In the anisotropic case, on the other hand, the situation is different. Here, the physical and geometric directions are not aligned with each other, since the physical properties vary with direction, so that (1.17) can no longer be written in the form or (1.21) or some similar form in which the physical and geometrical properties would be seperated. While this makes computations considerably more difficult, the difficulty is not insurmountable. As (1.17) shows the quantities $\boldsymbol{F}^{\prime} ;$, obtained in transforming into a new coordinate system will contain the amall parameter h^{*}. Let us expand these quantities in power series of $h^{* *}$ (in many cases these series may have a finite number of terma), 1.e. let

$$
\begin{align*}
& F_{\alpha \beta}^{\lambda_{\beta}}=\sum_{s=0}^{s=8} h^{* s} F_{\alpha \beta}^{\lambda \mu(s)}, \quad F_{\alpha \beta}^{\alpha 3}=\sum_{s=0}^{s=S} h^{* s} F_{a \beta}^{3 \beta(s)} \\
& F_{s \beta}^{\alpha \beta}=\sum_{s=0}^{s=S} h^{* s} F_{s 3}^{\alpha \beta(s)}, \quad F_{\alpha \beta}^{3 \beta}=\sum_{s=0}^{s=8} h^{* s} F_{\alpha \beta}^{3 \beta(s)} \tag{2.3}
\end{align*}
$$

Utilizing (2.1) and (2.3), (1.22) may be written as

$$
\begin{align*}
& -\frac{\theta}{H} \frac{\partial W}{\partial \zeta}=h^{*}\left[\sum_{s=0}^{s=S} h^{* d} F_{33}^{33(s)} \tau^{33}+\sum_{s=0}^{s=S} h^{* s} F_{33}^{\lambda \mu(s)} g_{\xi \mu \mu} \tau^{\xi \nu}\left(a_{\nu \lambda}-h^{*} \zeta R b_{\nu \lambda .}\right)\right] \\
& 1 / 2 R^{-1} \theta\left(-h^{*} \nabla_{a}^{\prime} W+h^{*} R b_{\alpha}^{\lambda} u_{\lambda}+\partial u_{\alpha} / \partial \zeta-h^{*} \zeta R b_{\alpha}^{\lambda} \partial u_{\lambda} / \partial \zeta\right)= \\
& =h^{*}\left[\sum_{s=0}^{s=S} h^{* s} F_{\alpha 3}^{\lambda 3(s)} \tau^{\xi s} g_{\xi \lambda}+\sum_{8=0}^{s=S} h^{* s} F_{\alpha 3}^{3 \lambda(s)} \tau^{3 \xi}\left(a_{\xi \lambda}-h^{*} R \zeta b_{\xi \lambda}\right)\right] \tag{2.4}\\
& 1 / 9 R^{-1} \boldsymbol{\theta}\left\{\nabla_{\beta}^{\prime} u_{\alpha}+\nabla_{\alpha}^{\prime} u_{\beta}+2 R b_{\alpha \beta} W-\zeta R h^{*}\left[b_{\beta}^{\lambda}\left(\nabla_{\alpha}{ }^{\prime} u_{\lambda}+R b_{\lambda \alpha} W\right)+\right.\right. \\
& \left.\left.+b_{\alpha}^{\lambda}\left(\nabla_{\beta}^{\prime} u_{\lambda}+R b_{\lambda \beta} W\right)\right]\right\}=\sum_{s=0}^{s=S} h^{* 8} F_{\alpha \beta}^{\lambda \mu(s)} g_{\xi \mu} \tau^{\xi \nu}\left(a_{\nu \lambda}-h^{*} R \zeta b_{\nu \lambda}\right)+\sum_{s=0}^{s=S^{s}} h^{* s} F_{\alpha \beta}^{33(s)} \tau^{33}
\end{align*}
$$

Here, in accordance with (1.3), (1.4) and (2.1), $g_{\alpha \beta}$ and ϑ are given as

$$
\begin{equation*}
g_{\alpha \beta}=a_{\alpha \beta}-2 h^{*} R \zeta b_{\alpha \beta}+h^{* 2} \zeta^{2} R^{2} b_{a}^{\lambda} b_{\beta \lambda}, \quad \vartheta=1-h_{\xi}^{*} R b_{\lambda}^{\lambda}+h^{* 2} \zeta^{2} R^{2} K \tag{2.5}
\end{equation*}
$$

Boundary conaltions. Assume that there are applied stresses $\tau^{3 a}$ and τ^{33}, acting on the external and internal shell surfaces $\boldsymbol{f}^{3}= \pm h$ and that, per unit area of the shell's middle surface, these stresmes are

$$
\begin{equation*}
\tau^{33}= \pm 1 / 2 p, \quad \tau^{3 \alpha}= \pm 1 / 2 p^{\alpha} \tag{2.6}
\end{equation*}
$$

3. Immamental Itorative proogss. The iterative process used was developed by Gol'denveizer in [1 and 2].

The procedure which permits the determination of the fundamental stresses, i.e. those atresses which do not generally attenuate rapidly with distance from the shell boundaries, will be termed the fundamental iterative process. Let Q be some stress component, and V some displacement component. We will seek solutions to (2.2) and (2.4) in the form

$$
\begin{equation*}
Q=\frac{1}{h^{*} r} \sum_{s=0}^{s=S} h^{* s} Q_{(s)}, \quad V=\frac{1}{h^{*} r} \sum_{s=0}^{s=S} h^{* s} V^{(s)} \tag{3.1}
\end{equation*}
$$

Here it is assumed that $Q_{(s)} \equiv 0, V^{(s)} \equiv 0$ for $s<0$; the integers r are different for different stress and displacement components. The various r must be ohosen after substituting (3.1) into (2.2) and (2.4). The choice must be such that equating to zero the coefficients of like powers of n^{*} yields a consistent sequence of systems of equations for the coefficients in the power series (3.1). Such a set of r is referred to as a consistent set.

We choose the r as follows (the integer x is as yet undetermined):

$$
\begin{equation*}
\tau^{\alpha \beta} \rightarrow r=x+1, \quad\left(\tau^{\alpha 3}, \tau^{33}\right) \rightarrow r=x, \quad\left(u_{\alpha}, W\right) \rightarrow r=x+1 \tag{3.2}
\end{equation*}
$$

Substitution of (3.1) into (2.2) and (2.4) and taking into account (3.2), yields the following system of equations for the determination of the power series coerficients in (3.1):

$$
\begin{array}{cc}
\nabla_{\alpha}^{\prime} \tau_{(s)}^{\alpha \beta}-b_{\alpha}^{\beta} R \tau_{(s-1)}^{\alpha 3}+\partial \tau_{(s)}^{3 \beta} / \partial \zeta=0, & \nabla_{\alpha}^{\prime} \tau_{(s-1)}^{\alpha s}+R b_{\alpha \beta} \tau_{(s)}^{\alpha \beta}+\partial \tau_{(s)}^{33} / \partial \xi=0 \\
c_{\lambda \beta}\left[\tau_{(s)}^{\lambda \beta}-R \zeta b_{\mu(s-1)}^{\lambda} \tau_{(s)}^{\mu 3}\right]=0, & \tau_{(s)}^{3 \lambda}=\tau_{(s)}^{\lambda 3}-R \zeta b_{\mu}^{\lambda} \tau_{(s-1)}^{\mu 3} \tag{3.3}
\end{array}
$$

$$
\begin{gathered}
-R^{-1} \partial W^{(s)} / \partial \zeta+\zeta b_{\lambda}^{\lambda} \partial W^{(s-1)} / \partial \zeta-\zeta^{2} R K \partial W^{(s-2)} / \partial \zeta=F_{33}^{33(0)} \tau_{(s-2)}^{33}+ \\
+F_{33}^{33(1)} \tau_{(s-3)}^{83}+\ldots+F_{33(k)}^{33(s)} \tau_{(s-k-2)}^{33}+\ldots+F_{33}^{\lambda \mu(0)}\left[a_{\xi \mu} a_{v \lambda} \tau_{(s-1)}^{\xi_{\nu}}-\right. \\
-\zeta R\left(a_{\xi \mu \nu \lambda} b_{v \lambda}+2 a_{v \lambda} b_{\xi \mu}\right) \tau_{(s-2)}^{\xi_{v}}+\zeta^{2} R^{2}\left(2 b_{\xi \mu} b_{v \lambda}+a_{v \lambda} b_{\xi}^{\alpha} b_{\mu \alpha}\right) \tau_{(s-3)}^{\xi_{v}}- \\
\left.-\zeta^{3} R^{s} b_{\xi}^{\alpha} b_{\mu a} b_{\nu \lambda} \tau_{(s-4)}^{\xi_{v}}\right]+\cdots+F_{33}^{\lambda \mu(k)}[\cdots]_{(s-k)}+\cdots
\end{gathered}
$$

$$
\begin{aligned}
& { }_{1 / 2} R^{-1}\left[-\nabla_{\alpha} W^{(8-1)}+R b_{\alpha}^{\lambda} u_{\lambda}^{(s-1)}+\partial u_{\alpha}^{(s)} / \partial \zeta-\zeta R b_{\alpha}^{\lambda} \partial u_{\lambda}^{(s-1)} / \partial \zeta\right]- \\
& -1 / 2 \zeta b_{\lambda}^{\lambda}[\cdots]_{(s-1)}+1 / 2 \zeta^{2} R K[\cdots]_{(s-2)}=F_{\alpha 3}^{\lambda 3(0)}\left[a_{\xi \lambda} \tau_{(s-2)}^{\xi_{3}}-2 \zeta R b_{\bar{\xi} \lambda^{2}{ }_{(s-3)}^{\xi_{3}}+}+\right. \\
& \left.+\zeta^{2} R^{2} b_{\xi}^{\nu} b_{\lambda \nu} \tau_{(s-4)}^{\xi 3}\right]+F_{\alpha 3}^{3 \lambda(0)}\left[a_{\xi \lambda} \tau_{(s-2)}^{3 \xi}-R \zeta b_{\xi \lambda} \tau_{(s-3)}^{3 \xi}\right]+\ldots+F_{\alpha 3}^{\lambda 3(k)}[\ldots]_{(s-k)}+\ldots \\
& { }^{1 / 2} R^{-1}\left\{\nabla_{\alpha}^{\prime} u_{\beta}^{(s)}+\nabla_{\beta}^{\prime} u_{\alpha}^{(s)}+2 R b_{\alpha \beta} W^{(s)}-\zeta R\left[b_{\beta}^{\lambda}\left(\nabla_{\alpha}^{\prime} u_{\lambda}^{(s-1)}+R b_{\lambda \alpha} W^{(s-1)}\right)+\right.\right. \\
& \left.\left.+b_{\alpha}^{\lambda}\left(\nabla_{\beta}^{\prime} u_{\lambda}^{(s-1)}+R b_{\lambda \beta} W^{(s-1)}\right)\right]\right\}-1 / 2 b_{\lambda}^{\lambda}\{\cdots\}_{(s-1)}+1 / 2 \zeta^{2} R K\{\ldots\}_{(s-2)}= \\
& =F_{\alpha \beta}^{\lambda \mu(0)}\left[a_{\xi \mu} a_{\nu \lambda} \tau_{(s)}^{\xi_{\nu}}-\zeta R\left(a_{\xi \mu} b_{\nu \lambda}+2 a_{\nu \lambda} b_{\xi \mu}\right) \tau_{(s-1)}^{\xi v}+\right. \\
& \left.+\zeta^{2} R^{2}\left(2 b_{\bar{\zeta}, \mu} b_{\nu \lambda}+a_{\nu \lambda} b_{\dot{\zeta}}^{\alpha} b_{\mu \alpha}\right) \tau_{(s-2)}^{\Sigma_{\nu}}-\zeta^{3} R^{3} b_{\xi}{ }^{n} b_{\mu-\eta} b_{\nu \lambda} \tau_{(s-3)}^{\xi_{\nu}}+\ldots\right]+ \\
& +F_{a \beta}^{\lambda_{\mu}(k)}[\cdots]_{(s-k)}+\ldots+F_{\alpha \beta}^{33(0)} \tau_{(s-1)}^{s 3}+\ldots+F_{\alpha \beta}^{33(k)} \tau_{(s-k-1)}^{33}+\cdots
\end{aligned}
$$

Here and hereinarter the symbol $[\ldots]_{(s-k)}$, with $k=1,2, \ldots$, represents the expression contained in the immediately preceding brackets with s replaced by ($a-k$).

As one might expect, Equations (3.3) coincide with the corresponding equations for isotropic shells, whereas Equations (3.4) are essentially different from the corresponding isotropic ones. The orthotropic and isotropic shell equations may be obtained as special cases of (3.4).

Setting $F_{12}^{i i}=F_{i i}^{12}=0$ and $F_{13}^{23}=0$, in (3.4), leads to the corresponding orthotropic shell equations. If we set

$$
F_{\alpha \beta}^{\lambda \mu(0)}=[(1+\sigma) / E] \delta_{\alpha}^{\lambda} \oint_{\beta}^{\mu}-(\sigma / E) a^{\lambda \mu} a_{\alpha \beta}
$$

in (3.5), a result which may be obtained by neglecting terms containing h^{*} in (1.21), we obtain an equation which coincides with the corresponding 1sotropic shell equation [1].

The leading system of equations in (3.3) and (3.4) is given by

$$
\begin{gather*}
\nabla_{\alpha} \tau_{(0)}^{\alpha \beta}+\partial \tau_{(0)}^{3 \beta} / \partial \zeta=0, \quad R b_{\alpha \beta} \tau_{(0)}^{\alpha \beta}+\partial \tau_{(0)}^{33} / \partial \xi=0, \quad c_{\lambda \beta} \tau_{(0)}^{\lambda \beta}=0, \quad \tau_{(0)}^{3 \lambda}=\tau_{(0)}^{\lambda 3} \\
\partial W^{(0)} / \partial \xi=0, \quad \partial u_{\alpha}^{(0)} / \partial \zeta=0 \tag{3.5}\\
1 / 2 R^{-1}\left[\nabla_{\alpha}{ }^{\prime} u_{\beta}^{(0)}+\nabla_{\beta}^{\prime} u_{\alpha}{ }^{(0)}+2 R b_{\alpha \beta} W^{(0)}\right]=F_{\alpha \beta}^{\lambda \mu(0)} a_{\xi \mu} a_{\nu \lambda} \tau_{(0)}{ }^{(0 \nu}
\end{gather*}
$$

By making use of boundary conditions (2.6), Equations (3.5) are readily integrable with respect to 6 . For this purpose, (2.6) will be written in the form

$$
\begin{equation*}
P^{\alpha}=\sum_{s=0}^{s=5} h^{* s} P_{(s)}^{\alpha}, \quad p=\sum_{s=0}^{s=S} h^{* s} p_{(s)} \tag{3.6}
\end{equation*}
$$

Integration of (3.5) with respect to ζ then yields

$$
\begin{align*}
& W^{(0)}=w^{(0)}\left(\xi^{1}, \xi^{2}\right), \quad u_{\alpha}^{(0)}=v_{\alpha}^{(0)}\left(\xi^{1}, \xi^{2}\right), \quad c_{\lambda \beta} \tau_{(0)}{ }^{\lambda \beta}=0, \\
& { }_{\lambda \beta} \tau_{(0)}{ }^{\lambda \beta}=0, \quad \tau_{(0)}{ }^{3 \lambda}=\tau_{(0)}{ }^{\lambda s} \\
& \nabla_{a}{ }^{\prime} \tau_{(0)}{ }^{\alpha \beta}=-1 / 2 P_{(0)}^{\beta}, \quad R b_{\alpha \beta} \tau_{(0)}^{\alpha \beta}=-1 / 2 p_{(0)}, \quad \tau^{3 \beta}{ }_{(0)}=1 / 2 \xi P_{(0)}^{\beta}, \quad \tau_{(0)}^{33}=1 / 2 \zeta p_{(0)} \\
& { }^{1 / 2} R^{-1}\left[\nabla_{\alpha} v_{\beta}{ }^{(0)}+\nabla_{\beta}{ }^{\prime} v_{\alpha}{ }^{(0)}+2 R b_{\alpha \beta} W^{(0)}\right]=F_{\alpha \beta}{ }^{\lambda \beta(0)} a_{\xi_{\mu}} a_{\nu \lambda} \tau_{(0)}{ }^{\xi_{\nu}} \tag{3.7}
\end{align*}
$$

Equations (3.7) comprise a complete system of differential equations independent of 5 and containing ξ^{2} and ξ^{2} as the independent variables, with $\tau_{(0)}^{\lambda \beta}, \tau_{(0)}^{3 \lambda}, w^{(0)}$ and $v_{\alpha}^{(0)}$, as the unknown functions. It is apparent from (3.7) that the stresses $\tau_{\text {(0) }}$ do not vary over the shell thickness. Such a state of stress is closely related to the membrane state of stress of classical anisotropic shell theory [5].

Consider Equations (2.2) and (2.4) with the homogeneous boundary conditions

$$
\begin{equation*}
P_{(\mathrm{s})}^{\alpha}=p_{(s)}==0 \tag{3.8}
\end{equation*}
$$

It may be directiy verified that in this case there exista another form of the series of expansion (3.1) with the following consistent set of values of r :

$$
\begin{equation*}
\tau^{\alpha \beta} \rightarrow r=x+1, \quad\left(\tau^{\alpha 3}, \tau^{83}\right) \rightarrow r=x, \quad\left(u_{a}, W\right) \rightarrow r=x+2 \tag{3.9}
\end{equation*}
$$

Substituting (3.1) and (3.9) into (2.2) and (2.4) and requiring that the sums of coefficients of like powers of h^{*} vanish, we obtain again squations (3.3), but (3.4) is replaced by the following equations:

$$
-R^{-1} \partial W^{(8)} / \partial \zeta+\zeta b_{\lambda}^{\lambda} \partial W^{(s-1)} / \partial \zeta-\zeta^{2} R K \partial W^{(s-2)} / \partial \xi=F_{33}^{33(0)} \tau_{(s-3)}^{33}+\cdots
$$

$$
\cdots+F_{23}^{33(k)} \tau_{(s-3-k)}^{33}+\cdots+F_{33}{ }^{\lambda_{\mu}(0)}\left[a_{\bar{c} \mu} a_{v \lambda} \tau_{(s-2)}^{E v}-\zeta R\left(a_{i \mu} b_{v \lambda}+2 a_{v \lambda} b_{\xi \mu}\right) \tau_{(s-8)}^{E_{v}}+\right.
$$

$$
\left.+\zeta^{2} R^{2}\left(2 b_{\xi \mu} b_{v \lambda}+a_{v \lambda} \lambda_{\xi}^{\alpha} b_{\mu \alpha}\right) \tau_{(s-4)}^{\xi_{v}}-\zeta^{2} R^{2} b_{\tilde{\Sigma}}^{\alpha} b_{\mu a} b_{v \lambda} \tau_{(s-5)}^{\xi_{v}}\right]+\cdots+F_{33}^{\lambda_{\mu}(k)}[\cdots]_{(s-k)}+\cdots
$$

Consider the zeroth approximation in (3.3) and the zeroth and rirst approximations in (3.10)
α It is clear from (3.12) that $\tau_{0}^{\alpha \beta}$ is a linear function of 6 , so that
 we obtain $0=0$, i.e. the is a homogeneous function of 6 . Note that further integration of (3.11) and application of boundary conditions (3.8) yields

By comparison with the analogous isotropic shell cases it is easily seen that Equations (3.12) and (3.13) derine a state of stress which is closely related to the pure membrane state of stress of classical anisotropic sheil theory.

It is also important to note that in the works of Ambartsumian and others [5], the form or the atresses q^{36}, as given in (3.13) or in more general form, is asaumed; here, it is obtained from asyptotio integration of the equations of elanticity, thus providing proor of the above mentioned assumptions (within the linite of accuracy of those theories).
4. Btates of atreas whth a preater degree of variation. Consider states of streas and strain, which vary rapidiy as functions of θ^{1} and θ^{2} in addition to their rapid variation as functions of θ^{3}. These states will

$$
\begin{align*}
& W^{(0)}=w^{(0)}\left(\xi^{1}, \xi^{2}\right), \quad u_{\alpha}{ }^{(0)}=v_{\alpha}{ }^{(0)}\left(\xi^{1}, \xi^{2}\right), \quad \nabla_{\beta} v_{\alpha}{ }^{(0)} \psi \nabla_{\alpha}{ }^{\prime} v_{\beta}{ }^{(0)}+2 R b_{\alpha \beta} w^{(0)}=0 \\
& W^{(1)}=w^{(1)}\left(\xi^{1}, \xi^{2}\right), \quad u_{\alpha}{ }^{(1)}=\zeta\left(\nabla_{\alpha}{ }^{\prime} W^{(0)}-R b_{\alpha}{ }^{\lambda} v_{\lambda}{ }^{(0)}\right) \tag{3.12}\\
& { }^{1 / 2} b_{b} R^{-1}\left[\nabla_{\alpha}{ }^{\prime}\left(\nabla_{\beta}{ }^{\prime} w^{(0)}-R b_{\beta}^{\lambda} v_{\lambda}{ }^{(0)}\right) \not \nabla_{\beta}\left(\nabla_{\alpha}{ }^{\prime} w^{(0)}-R b_{\alpha}^{\lambda_{j}}{ }^{(0)}\right)-\right. \\
& \left.-R b_{\beta}^{\lambda}\left(\nabla_{\alpha}{ }^{\prime} u_{\lambda}{ }^{(0)}+R b_{\lambda \alpha}{ }^{w(0)}\right)-R b_{\alpha}{ }^{\lambda}\left(\nabla_{\beta}^{\prime} u_{a}{ }^{(0)}+R b_{\lambda \beta}{ }^{20}{ }^{(0)}\right)\right]=F_{\alpha \beta}{ }^{\lambda \mu(0)} a_{\xi \mu} a_{\nu \lambda}{ }^{\tau}(0)^{E v} \\
& \tau_{(0)}{ }^{8 \beta}=1 / 2\left(1-\zeta^{2}\right) \nabla_{\alpha}{ }^{\prime} \tau_{(0)}{ }^{\alpha \beta} / \zeta, \quad \tau_{(0)}{ }^{33}=1 / 2\left(1-\zeta^{2}\right) R b_{\alpha \beta} \tau_{(0)}^{\alpha \beta} / \zeta \tag{3.13}
\end{align*}
$$

$$
\begin{align*}
& \nabla_{a}{ }^{\prime} \tau_{(0)}{ }^{\alpha \beta}+\partial \tau_{(0)}^{\beta \beta} / \partial \xi_{\zeta}=0, \quad R b_{\alpha \beta} \tau_{(0)}{ }^{\alpha \beta}+\partial \tau_{(0)}{ }^{33} / \partial t_{\zeta}=0, \quad c_{\lambda \beta} \tau_{(0)}{ }^{\lambda \beta}=0 \\
& \tau_{(0)}{ }^{3 \lambda}=\tau_{(0)}{ }^{\lambda 3}, \quad \partial W^{(0)} / \partial \zeta=0, \quad \partial u_{\alpha}{ }^{(0)} / \partial \zeta=0, \quad \nabla_{\beta}{ }^{\prime} u_{\alpha}{ }^{(0)}+\nabla_{\alpha}{ }^{\prime} u_{\beta}{ }^{(0)}+2 R b_{\alpha \beta} W^{(0)}=0 \\
& \partial W^{(1)} / \partial \zeta=0, \quad \partial u_{a}{ }^{(1)} / \partial \zeta-\nabla_{\alpha}{ }^{\prime} W^{(0)}+R b_{a}{ }^{\lambda} u_{\lambda}{ }^{(0)}=0 \tag{3.11}\\
& 1 / 2 R^{-1}\left\{\nabla_{\alpha}{ }^{\prime} u_{\beta}^{(1)}+\nabla_{\beta}^{\prime} u_{\alpha}^{(1)}+2 R b_{\alpha \beta} W^{(1)}-\zeta R\left\{b_{\beta}^{\lambda}\left(\nabla_{\alpha}{ }^{\prime} u_{\lambda}{ }^{(0)}+R b_{\lambda \alpha}{ }^{(1)} W^{(0)}\right) \downarrow\right.\right. \\
& \left.\left.+b_{\alpha}^{\lambda}\left(\nabla_{\beta}^{\prime} u_{\lambda}{ }^{(0)}+R b_{\lambda \beta} W^{(0)}\right)\right]\right\}=F_{\alpha \beta}^{\lambda_{\mu}(0)} a_{\xi_{\mu}} a_{\nu \lambda} \tau_{(0)}{ }^{E \nu}
\end{align*}
$$

$$
\begin{align*}
& 1 / 2 R^{-1}\left[-\nabla_{a}{ }^{\prime} W^{(s-1)}+R b_{\alpha}^{\lambda} u_{\lambda}{ }^{(s-1)}+\partial u_{\alpha}{ }^{(s)} / \partial \zeta-\zeta R b_{\alpha}^{\lambda} \partial u_{\lambda}{ }^{(s-1)} / \partial \zeta\right]- \\
& -1 / s 5 b_{\lambda}^{\lambda}[\cdots]_{(s-1)}+1 / 25^{2} R K[\cdots]_{(s-2)}=F_{a 3}{ }^{\lambda(0)}\left[a_{\bar{E} \lambda}\left(\tau_{(s-3)}^{E s}+\tau_{(s-9)}^{\mathrm{sE}}\right)-\right. \tag{3.10}
\end{align*}
$$

$$
\begin{aligned}
& { }^{1 / s} R^{-1}\left\{\nabla_{\alpha}{ }^{\prime} u_{\beta}{ }^{(s)}+\nabla_{\beta}{ }^{\prime} u_{\alpha}{ }^{(s)}+2 R b_{\alpha \beta} W^{(s)}-\zeta R\left[b_{\beta}^{\lambda}\left(\nabla_{\alpha}{ }^{\prime} u_{\lambda}{ }^{(s-1)}+R b_{\lambda \alpha} W^{(s-1)}\right) \not \subset\right.\right. \\
& \left.\left.+b_{\alpha}^{\lambda}\left(\nabla_{\beta}{ }^{\prime} u_{\lambda}^{(0-1)}+R b_{\lambda \beta} W^{(0-1)}\right)\right]\right\}-1 / 2 b_{b}^{\lambda} b_{\lambda}^{\lambda}\{\cdots\}_{(s-1)}+1 / 2 b^{2} R K\{\cdots\}_{(s-2)}= \\
& =F_{\alpha \beta}{ }^{\lambda \mu(0)}\left[a_{\xi \mu} a_{v \lambda} \tau_{(\varepsilon-1)}^{E_{\nu}}-\zeta R\left(a_{\xi \mu} b_{\nu \lambda}+2 a_{\nu \lambda} b_{\bar{\xi} \mu}\right) \tau_{(z-2)}^{\xi_{\nu}} \downarrow\right. \\
& \left.+\zeta^{2} R^{2}\left(2 b_{\xi \mu} b_{\nu \lambda}+a_{\nu \lambda} b_{\xi}{ }^{a} b_{\mu \alpha}\right) \tau_{(b-8)}^{E_{\nu}}-\zeta^{3} R^{2} b_{\xi}^{\eta} b_{\mu n} b_{\nu \lambda} \tau_{\langle s-4)}^{\xi_{\nu}}\right]+\cdots \\
& \ldots+F_{\alpha \beta}{ }^{\lambda_{\mu}(k)}[\ldots]_{(s-k)}+\ldots+F_{\alpha \beta}^{3(0)} \tau_{(s-2)}^{38}+\ldots+F_{\alpha \beta}^{38(k)} \tau_{(s-2-k)}^{93}+\ldots
\end{aligned}
$$

be represented in the forme

$$
\begin{equation*}
\theta^{\alpha}=\xi^{\alpha} R / \boldsymbol{K}_{(\alpha)}, \quad \theta^{3}=h \xi \tag{4.1}
\end{equation*}
$$

and we will assume that the variation of atresses and atrains as functions or $\left(\xi^{i}, \xi^{2}, 6\right)$ is not greet. Hire, $K_{(a)}$ is a dimanaionleas oonstant which is large conpared to unity and which inortaces in magituge as the variation in the state of stress and atrein ingreaces. Folloming [6], we let $K_{(\alpha)}=\left(h^{*}\right)^{-1 \alpha}$ with $t_{\alpha}=p_{\alpha} / g_{\alpha}$, where t_{α} is the exponent of the variation In the $\theta^{\text {d }}$ diregtions wile $p_{m_{2}}$ and qe are positive integers. Introducing tranaformation (4.1) into (1.12), we obtain

$$
\begin{gather*}
\left.R \nabla_{\lambda} A^{\alpha \beta}=K_{(\lambda)} \nabla_{\lambda}^{\bullet} A^{\mu \beta}, \quad R \nabla_{\lambda} A_{a}=K_{(\lambda)} \Delta_{\lambda}^{*} A_{a}\right) \cdots \\
\nabla_{\lambda}^{*} A^{\alpha \beta}=\partial A^{\alpha \beta} / \partial \xi^{\lambda}+\left(\Gamma_{\mu \lambda}^{\alpha} A^{\mu A}+\Gamma_{\mu \lambda}^{\beta} A^{\omega \mu}\right) R / K_{(\lambda)} \tag{4.2}\\
\nabla_{\lambda}^{\bullet} A_{a}^{*}=\partial A_{\alpha} / \partial \xi^{\lambda}-\Gamma_{\alpha \lambda}^{\mu} A_{\mu} R / K_{(\lambda)}
\end{gather*}
$$

With the sid of (4.1) and (4.2), Equations (1.11), (1.9) and (1.22) beoome

$$
\begin{aligned}
& h^{*} K_{(\alpha)} \nabla_{\alpha}^{*} \tau^{\alpha \beta}-h^{*} R b_{\alpha}^{\beta \tau^{\alpha \beta}}+\frac{\partial \tau^{3 \beta}}{\partial \zeta}=0, \quad h^{*} K_{(\alpha)} \nabla_{\alpha}^{*} \tau^{a s}+h^{*} R b_{\alpha \beta^{2}} \tau^{\alpha \beta}+\frac{\partial \tau^{\beta *}}{\partial \zeta}=0 \\
& c_{\lambda \beta}\left(\tau^{\lambda \beta}-h^{*}{ }_{b}^{*} R b_{\epsilon}{ }^{\lambda} \tau^{\alpha \beta}\right)=0, \quad \tau^{s \lambda}=\tau^{\lambda 3}-h^{*} \zeta R b_{\mu}^{\lambda} \tau^{\mu 3}
\end{aligned}
$$

$$
\begin{align*}
& 1 / 2 R^{-1} \theta\left(-h^{*} K_{(\mu)} \nabla_{4}^{*} W+h^{*} R b_{\mu}^{\lambda_{\mu}}+\partial u_{\alpha} / \partial \zeta-h^{*} R \zeta b_{\mu}^{\lambda} \partial u_{\lambda} / \partial \zeta\right)= \tag{4.3}\\
& =h^{*}\left[\sum_{s=0}^{s=8} h^{* 8} F_{\alpha \beta}^{\lambda 3}{ }^{(s)} \tau^{\xi_{3}} g_{\xi \lambda}+\sum_{s=0}^{s=8} h^{* *} F_{\alpha \beta}^{s \lambda}\left({ }^{(a)} \tau^{8 \xi}\left(a_{\xi \lambda}-h^{*} \zeta R b_{\xi \lambda}\right)\right]\right.
\end{align*}
$$

$$
\begin{aligned}
& 1 / \lambda R^{-1 \&}\left\{K_{(\beta)} \nabla_{\beta}^{\bullet} u_{\alpha}+K_{(\alpha)} \nabla_{\alpha}^{*} u_{\beta}+2 b_{\alpha \beta} R W-h^{*} R \zeta\left[b_{\beta}^{\lambda}\left(K_{a} \nabla_{a}^{*} u_{\lambda}+R b_{\lambda \alpha} W\right)+\right.\right.
\end{aligned}
$$

Consider a state of strese having the same exponent of variation in both coordinate directions. Asavis, moreover, that the exponent of variation is nonsero, i.e.

$$
K_{(1)}=K_{(2)}=K=h^{*}(-t), t_{(1)}=t_{(1)}=t=p / q
$$

Let $\eta=\left(h^{*}\right)^{-1 / q}$. Whence

$$
\begin{equation*}
h^{*}=\eta^{-q}, \quad K=\eta^{p} \tag{4.4}
\end{equation*}
$$

 that $p<q(t<1)$. We seek solution of $(4,3)$ in the form

$$
\begin{equation*}
Q=\eta^{r} \sum_{s=0}^{s=3} S \eta^{-s} Q_{(s)}, \quad V=\eta^{r} \sum_{s=0}^{s=S} \eta^{-s} V^{(s)} \tag{4.5}
\end{equation*}
$$

Here, as in (3.1), 0 is typical strese, while V is typical strain. In this ase there are two different consistent sets of values of F. The first is given by

$$
\begin{gather*}
\tau^{\alpha \beta} \rightarrow r=x+q, \quad \tau^{\alpha 3} \rightarrow r=x+p, \quad \tau \rightarrow r=x+2 p-q, \\
u_{\alpha} \rightarrow r=x+q-p, \quad W r \rightarrow r=x+2 q-2 p \tag{4.6}
\end{gather*}
$$

The system of equations corresponding to (4.6) is

The second consistent set of r is

$$
\begin{gather*}
\tau^{\alpha \beta} \rightarrow r=x+q, \quad \tau^{\alpha 3} \rightarrow r=x+p, \quad \tau^{33} \rightarrow r=x+2 p-q \\
u_{\alpha} \rightarrow r=x+q-p, \quad W \rightarrow x<r<x+2 q-2 p \tag{4.8}
\end{gather*}
$$

The leading system of equations of the corresponding sequence is (because of its cumbersomness, only the leading system is given)
$\partial_{\alpha^{\prime}} \tau_{(0)}{ }^{\alpha \beta}+\partial \tau_{(0)}{ }^{3 \beta} / \partial \zeta=0, \quad \partial_{\alpha} \tau_{(0)}{ }^{\alpha 3}+\partial \tau_{(0)}{ }^{33} / \partial \zeta=0, \quad c_{\lambda, \beta} \tau_{(0)}{ }^{\lambda \beta}=0, \quad \tau_{(0)}{ }^{3 \lambda}=\tau_{(0)}{ }^{\lambda 3}$
$\partial W^{(0)} / \partial \zeta=0, \quad \partial u_{\alpha}{ }^{(0)} / \partial \zeta=0, \quad{ }^{1 / \Omega} R^{-1}\left[\partial_{\beta} u_{\alpha}{ }^{(0)}+\partial_{\alpha} u_{\beta}{ }^{(0)}\right]=F_{\alpha \beta}{ }^{\lambda \mu(0)} a_{\xi \mu} a_{\nu \lambda} \tau_{(0)}{ }^{\xi \nu}$
When $p=q$, the consistent set of values in (4.6) remains applicable. but the equations obtained in this case are different

$$
\begin{gather*}
\partial_{\alpha} \tau_{(s)}^{\alpha \beta}+\partial \tau_{(s)}{ }^{3 \beta} / \partial \zeta+R\left[\Gamma_{\mu \alpha}^{\alpha} \tau_{(s-p)}{ }^{\mu \beta}+\Gamma_{\mu \alpha}^{\beta} \tau_{(s-p)}{ }^{\mu \alpha \alpha}\right]-R b_{\alpha}^{\beta} \tau_{(s-p)}{ }^{\alpha 3}=0 \\
\partial_{\alpha} \tau_{(s)}^{\alpha 3}+\partial \tau_{(s)}{ }^{33} / \partial \zeta+R \Gamma_{\mu-\alpha}^{\alpha} \tau_{(s-p)}{ }^{\mu \cdot 3}+R b_{\alpha \beta} \tau_{(s-p)}{ }^{\alpha \beta}=0 \tag{4.10}\\
c_{\lambda \beta}\left[\tau_{(s)}{ }^{\lambda \beta}-\zeta R b_{\alpha}^{\lambda} \tau_{(s-p)}{ }^{\alpha \beta}\right]=0, \quad \tau_{(s)}{ }^{3 \lambda}=\tau_{(s)}{ }^{\lambda 3}-\zeta R b_{\mu}^{\lambda} \tau_{(s-p)}{ }^{\mu 3}
\end{gather*}
$$

$-R^{-1} \partial W^{(s)} / \partial \zeta+\zeta b_{\lambda}^{\lambda} \partial W^{(s-p)} / \partial \zeta-\zeta^{2} R K \partial W^{(s-2 p)} / \partial \zeta=F_{33}{ }^{33(0)} \tau_{(s)}^{33}+\ldots$
$\ldots+F_{33}^{33(k)} \tau_{(s-k p)}^{33}+\ldots+F_{33}^{\lambda \mu(0)}\left[a_{\xi_{\mu}} a_{\nu \lambda} \tau_{(s)}^{5 \nu}-\sum_{\Sigma} R\left(a_{\xi \mu} b_{\nu \lambda}+2 a_{\nu \lambda} b_{\xi_{\mu} \mu}\right) \tau_{(B-p)}^{\xi_{\nu}}+\right.$

$$
\left.+R^{2} \zeta^{2}\left(b_{\xi \mu} b_{\nu \lambda}+a_{\nu \lambda} b_{\xi}^{\alpha} b_{\alpha \mu}\right) \tau_{(s-2 p)}^{\xi_{\nu}}-R^{3} \zeta^{2} b_{\xi}^{\alpha} b_{\alpha \mu} b_{\nu \lambda} \tau_{(s-3 p)}^{\bar{j}}\right]+\ldots
$$

$$
\ldots+F_{33}^{\lambda_{\mu}(k)}[\cdots]_{(s-k p)}+\ldots
$$

$$
\begin{aligned}
& \partial_{\alpha} \tau_{(s)}^{\alpha \beta}+\partial \tau_{(s)}{ }^{3 \beta} / \partial \zeta-R b_{\alpha}^{\beta} \tau_{(s-q)}^{\alpha 3}+R\left[\Gamma_{\mu-\alpha}^{\alpha} \tau_{(s-p)}^{\mu \beta}+\Gamma_{\mu-\alpha}^{\beta} \tau_{(s-p)}{ }^{\mu \alpha}\right]=0 \\
& \partial_{\alpha} \tau_{(s)}{ }^{\alpha 3}+\partial \tau_{(s)}{ }^{33} / \partial_{s}^{\kappa}+R \Gamma_{\mu \alpha}^{\alpha} \tau_{(s-p)}^{\mu 3}+R b_{\alpha \beta} \tau_{\left(q-2 p_{+s)}\right.}^{\alpha \beta}=0 \\
& c_{\lambda \beta}\left[\tau_{(s)}{ }^{\lambda \beta}-\zeta R b_{\alpha}^{\lambda} \tau_{(s-q)}{ }^{\alpha \beta}\right]=0, \quad \quad \tau_{(s)}{ }^{3 \lambda}=\tau_{(s)}{ }^{\lambda 3}-\zeta R b_{\mu}^{\lambda} \tau_{(s-q)}{ }^{\mu 3} \\
& -R^{-1} \partial W^{(s)} / \partial \zeta+\zeta b_{\lambda}^{\lambda} \partial W^{(s-q)} / \partial \zeta-\zeta^{2} R K \partial W^{(s-2 q)} / \partial \zeta=F_{33}^{33(0)} \tau_{(s+4 p-4 q)}^{33}+\ldots \\
& \ldots+F_{33}{ }^{33}{ }^{(k)} \tau_{(s+4 p-4 q-k q)}^{33}+\ldots+F_{33}{ }^{\lambda \mu(0)}\left[a_{\xi \mu} a_{v \lambda} \tau_{(s+2 p-2 q)}^{\xi^{\nu}}-\right. \\
& \left.-R \zeta\left(a_{\xi \mu} b_{v \lambda}+2 a_{v \lambda} b_{\xi_{j}}\right) \tau_{(s+2 p-3 q)}^{\xi_{v}}\right]+R^{2 \zeta} \zeta^{2}\left(b_{\xi \mu} b_{v \lambda}+a_{\nu \lambda} b_{\xi}^{\chi} b_{\alpha \mu}\right) \tau_{(s+2 p-4 q)}^{\xi_{\nu}}- \\
& \left.-R^{3 \xi} \zeta^{3} b_{\xi}^{\alpha} b_{\alpha \mu} b_{\nu \lambda} \tau_{(s+2 p-5 q)}^{\xi \nu}\right]+\ldots+F_{33}^{\lambda \mu(k)}[\cdots]_{(s-k q)}+\ldots \\
& 1 / 2 R^{-1}\left[-\partial_{\alpha} W^{(s)}+\partial u_{\alpha}^{(s)} / \partial \zeta+R b_{\alpha}^{\lambda} u_{\lambda}^{(s-q)}-R \zeta b_{\alpha}^{\lambda} \partial u_{\lambda}^{(s-q)} / \partial \zeta\right]-1 / 2 \zeta b_{v}^{v}[\cdots]_{(s-q)}+ \\
& +1 / 2 \zeta^{2} R K[\cdots]_{(s-2 q)}=F_{\alpha 3}^{\lambda 3(0)}\left[a_{\xi \lambda} \tau_{(s+2 p-3 q)}^{\tau_{3}}-2 \zeta R b_{\xi \lambda} \tau_{(s+2 p-3 q)}^{\xi 3}+\right. \\
& \left.+\zeta^{2} R^{2} b_{\xi}^{\mu} b_{\lambda ;} \tau_{(s+2 p-4 q)}^{53}\right]+F_{\alpha 3}^{3 \lambda(0)}\left[a_{\xi \lambda} \tau_{(s+2 p-2 q)}^{3 \xi}-\zeta R b_{\xi \lambda} \tau_{(s+2 p-3 q)}^{3 \xi}\right]+\ldots \\
& \ldots+F_{\alpha 3}^{3 \lambda(k)}[\cdots]_{(s-k q)}+\ldots \\
& 1 / 2 R^{-1}\left\{\partial_{\beta} u_{\alpha}{ }^{(s)}+\partial_{\alpha} u_{\beta}{ }^{(s)}-2 R \Gamma_{\alpha \beta}^{\mu} u_{\mu}{ }^{(s-p)}+2 R b_{\alpha \beta} W^{(s+q-2 p)}-\right. \\
& -R \zeta\left[b_{\beta}^{\lambda}\left(\partial_{\alpha} u_{\lambda}{ }^{(s-q)}-R \Gamma_{\alpha}{ }^{\mu} u_{\mu}{ }^{(s-p-q)}+R b_{\lambda \alpha} W^{(s-2 p)}\right)+b_{\alpha}^{\lambda}\left(\partial_{\beta} u_{\lambda}{ }^{(s-q)}-\right.\right. \\
& \left.\left.\left.-R \Gamma_{\beta \lambda}{ }^{\mu} u_{\mu}{ }^{(s-p-q)}+R b_{\lambda \beta} W^{(s-2 p)}\right)\right]\right\}-1 / 2 \zeta b_{\lambda}^{\lambda}\{\cdots\}_{(s-q)}+11_{2} \zeta^{2} R K\{\cdots\}_{(s-2 q)}= \\
& =F_{\alpha \beta}{ }^{\lambda \mu(0)}\left[a_{\bar{\zeta} \mu} a_{\nu \lambda} \tau_{(s)}{ }^{\xi \nu}-\zeta R\left(a_{\xi \mu} b_{\nu \lambda}+2 a_{\nu \lambda} b_{\xi \mu}\right) \tau_{(\dot{s}-q)}{ }^{\bar{\zeta} \nu}+\zeta^{2} R^{2}\left(a_{\nu \lambda} b_{\xi}^{\alpha} b_{\alpha \mu}+\right.\right. \\
& \left.\left.+2 b_{\xi \mu} b_{\nu \lambda}\right) \tau_{(s-2 q)}^{\xi \nu}-R^{3} \xi^{3} b_{\xi}^{\alpha} b_{\alpha \mu} b_{\nu \lambda} \tau_{(s-3 q)}^{\xi_{\nu}}\right]+\ldots+F_{\alpha \beta^{\mu(k)}}^{\lambda_{\mu}}[\cdots]_{(3-k q)}+\ldots \\
& \ldots+F_{\alpha \beta}^{33{ }^{(0)} \tau_{(s+2 p-2 q)}^{33}+\ldots+F_{\alpha \beta}^{33(k)} \tau_{(s+2 p-2 q-k q)}^{33}+\ldots}
\end{aligned}
$$

$$
\begin{aligned}
& 1 / 2 R^{-1}\left[-\partial_{a} W^{(s)}+\partial u_{\alpha}{ }^{(s)} / \partial \zeta+R b_{a}^{\lambda} u_{\lambda}{ }^{(s-p)}-H \zeta b_{\alpha}^{\lambda} \partial u_{\lambda}{ }^{(0-p)} / \partial \zeta\right]-\quad \text { (4.10) } \\
& -1 / 2 \zeta b_{v}^{v}[\cdots]_{(s-p)}+1 / 2 \zeta^{2} R K[\cdots]_{(s-2 p)}=F_{a 3}^{\lambda_{3}(0)}{ }_{\left[a_{E} \lambda^{\tau}(s)\right.}{ }^{E_{3}}-2 \zeta R b_{E \lambda}{ }^{\tau}(s-p){ }^{E 3}+ \\
& \left.+\zeta^{2} R^{2} b_{\Sigma}^{\mu} b_{\lambda \mu} \tau_{(s-2 p)}{ }^{\xi 3}\right]+F_{\alpha 3}^{3 \lambda}{ }^{3{ }^{(0)}}\left[a_{\xi, \lambda}{ }^{\tau}(s){ }^{3 \xi}-\zeta R b_{\xi \lambda} \tau_{(s-p)}{ }^{3 \xi}\right]+\ldots \\
& +\ldots F_{\alpha 3}{ }^{\lambda_{3}(k)}[\cdots]_{(s-k p)}+\ldots \\
& { }^{2} /{ }_{2} R^{-1}\left\langle\partial_{\beta} u_{\alpha}{ }^{(\theta)}+\partial_{\alpha} u_{\beta}{ }^{(\theta)}-2 R \mathrm{I}_{\alpha \beta}^{\mu} u_{\mu}{ }^{(\theta-p)}+2 R b_{\alpha \beta} W^{(\theta-p)}-R \zeta\left[b_{\beta}{ }^{(0)} \partial_{\lambda} u_{\lambda}{ }^{(g-p)}-\right.\right. \\
& \left.\left.\left.-R \Gamma_{\alpha \lambda}^{\mu} u_{\mu}^{(8-2 p)}+R b_{\lambda \alpha} W^{(8-2 p)}\right)+b_{\alpha}^{\lambda}\left(\partial_{\beta} u_{\lambda}{ }^{(8-p)}-R \Gamma_{\beta}{ }^{\mu} u_{\mu}{ }^{(s-2 p)}+R b_{\lambda \beta} W^{(s-2 p)}\right)\right]\right\}- \\
& -1 / 25 b_{\lambda}^{\lambda}\{\cdots\}_{(s-p)}+{ }^{1 / 2} 5^{2} R K\{\cdots\}_{(s-2 p)}=F_{a \beta}{ }^{\lambda \mu}{ }^{(0)}\left[a_{\xi \mu} a_{\nu \lambda} \tau_{(s)}^{\mathrm{EV}}-\right. \\
& -\zeta R\left(a_{\xi \mu} b_{v \lambda}+2 a_{v \lambda} b_{\xi \mu}\right) \tau_{(s-p)}^{E \nu}+\zeta^{2} R^{2}\left(a_{v \lambda} b_{\xi}^{\alpha} b_{\alpha \mu}+2 b_{\xi \mu} b_{v \lambda}\right) \tau_{(8-2 p)}^{\xi_{\nu}}-
\end{aligned}
$$

$$
\begin{aligned}
& \ldots+F_{\alpha \in 9}^{33}{ }^{(k)} \tau_{(s-k p)}{ }^{33}
\end{aligned}
$$

It is easily shown that the state of stress defined by the first approximation in Equations (4.7), (4.9) and (4.10) is equivalent to that obtained from classical theory for large values of the exponent of variation.
5. Ausilisery iferative procest. Consider a state of stress having different variations in the θ^{1} and 0^{2} directions. For definiteness, suppose that the greater variation takes place in the θ^{1} direction. Assume that $K_{(1)}=h^{*-1}=\eta$, while $K_{(2)}=\eta^{0}$.

We will show that the state of stress in this case is essentially different from the case considered above. Let

$$
\begin{equation*}
\theta^{1}=R h^{*} \xi^{1}, \quad \theta^{2}=R \xi^{2}, \quad \theta^{3}=h \zeta \tag{5.1}
\end{equation*}
$$

We now seek a solution to (4.3) in the form given in (4.5). Then there are two consistent sets of r. The first one is

$$
\begin{gather*}
\left(\tau^{1 r}, \tau^{22}, \tau^{33}, \tau^{31}, \tau^{13}\right) \rightarrow r=x-1, \quad\left(\tau^{12}, \tau^{21}, \tau^{23}, \tau^{32}\right) \rightarrow r=x \\
\left(u_{1}, W\right) \rightarrow r=x-2, \quad u_{2} \rightarrow r=x-1 \tag{5.2}
\end{gather*}
$$

This set corresponds to the following system of equations:

$$
\begin{aligned}
\partial_{1} \tau_{(s)}^{11}+\partial_{2} \tau_{(s)}^{21}+R\left[\left(2 \Gamma_{11}^{1}+\Gamma_{12}^{2}\right) \tau_{(s-1)}^{11}\right. & \left.+\Gamma_{22}^{1} \tau_{(s-1)}^{22}\right]+R\left[\left(2 \Gamma_{12}^{1}+\Gamma_{22}^{2}\right) \tau_{(s)}^{21}+\right. \\
& \left.+\Gamma_{21}^{1} \tau_{(s)}^{12}\right]-R b_{1}^{1} \tau_{(s-1)}^{13}-R b_{2}^{1} \tau_{(s)}^{23}+\partial \tau_{(s)}^{31} / \partial t=0
\end{aligned}
$$

$\partial_{1} \tau_{(8)}{ }^{12}+\partial_{3} \tau_{(s-2)}{ }^{22}+R\left[\left(\Gamma_{11}^{1}+2 \Gamma_{21}^{2}\right) \tau_{(s-1)}{ }^{12}+\Gamma_{12}^{2 \tau_{(s-1)}}{ }^{21}+\right.$

$$
\left.+\tau_{(s-2)}^{22}\left(\Gamma_{21}^{2}+2 \Gamma_{22}^{2}\right)+\Gamma_{11}^{2} \tau_{(s-2)}^{11}\right]-R b_{1}^{2} \tau_{(s-2)}^{13}-R b_{2}^{2} \tau_{(8-1)}^{23}+\partial \tau_{(s)}^{32} / \partial \zeta=0
$$

$\partial_{1} \tau_{(s)}^{13}+\partial_{2} \tau_{(s)}^{23}+R\left(\Gamma_{11}^{1}+\Gamma_{12}^{2}\right) \tau_{(s-1)}^{13}+R \tau_{(s)}^{23}\left(\Gamma_{21}^{1}+\Gamma_{22}^{2}\right)+$

$$
+R\left(b_{11} \tau_{(\delta-1)}{ }^{11}+b_{22} \tau_{(f-1)}{ }^{22}\right)+R\left(b_{12} \tau_{(\delta)}{ }^{12}+b_{21} \tau_{(s)}{ }^{21}\right)+\partial \tau_{(s)}{ }^{33} / \partial \zeta=0
$$

$c_{18} \tau_{(\mathrm{s})}{ }^{12}+c_{21} \tau_{(\mathrm{s})}^{21}-\zeta R\left[c_{12}\left(b_{1}^{1} \mathbf{x}_{(s-1)}^{12}+b_{2}^{1} \tau_{(s-2)}^{22}\right)+c_{21}\left(b_{1}^{4}{ }^{2}{ }_{(s-1)}^{11}+b_{2}^{2} \tau_{(s-1)}^{21}\right)\right]=0$
$\tau_{(s)}^{31}=\tau_{(s)}^{13}-\tau R\left[b_{1}^{1} \tau_{(s-1)}^{13}+b_{2,}^{1} \tau_{4}^{23}\right], \quad \tau_{(s)}^{32}=\tau_{(3)}^{23}-\zeta R\left[b_{1}^{2} \tau_{(s-2)}^{13}+b_{2}^{2} \tau_{(s-1)}^{23}\right]$
$-R^{-1} \partial W^{(8)} / \partial t+\zeta b_{\lambda}^{\lambda} \partial W^{(s-1)} / \partial t-\zeta^{2} R K \partial W^{(s-2)} / \partial t_{t}=F_{33}^{33(0)} \tau_{(s)}^{33}+\ldots$

$$
\begin{aligned}
& \ldots+F_{33}^{33(k)} \tau_{(s-k)}^{33}+\ldots+F_{33}{ }^{\lambda \mu}{ }^{(0)}\left[a_{\nu \mu \mu \lambda} a_{\nu \lambda} \tau_{(s)}^{\nu \nu}-\zeta R\left(a_{\nu \mu \mu} b_{\nu \lambda}+2 a_{\nu \lambda} b_{\nu \mu \nu}\right) \tau_{(s-1)}{ }^{\nu \nu}+\right. \\
& +\zeta^{2} R^{2}\left(a_{\nu \lambda} b_{v}^{\alpha} b_{\alpha \mu}+2 b_{\nu \mu} b_{v \lambda}\right) \tau_{(s-2)}{ }^{\nu \nu}-R^{3} \zeta^{2} b_{v}^{\alpha} b_{\alpha \mu \mu} b_{\nu \lambda} \tau_{(s-3)}{ }^{\nu \nu}-
\end{aligned}
$$

$\left.\left.+b_{1}^{2} \partial u_{2}^{(8)} / \partial \zeta\right)\right]-1 / x \zeta_{\lambda}^{\lambda}[\cdots]_{(s-1)}+1 / 2 \zeta^{2} R K[\cdots]_{(8-2)}=F_{13}^{\lambda_{3}(0)}{ }_{\left[a_{1 \lambda} \lambda_{(s)}\right.}{ }^{13}-$ $\left.-2 \zeta R b_{1 \lambda}\left(\tau_{(\beta)}^{23}+\tau_{(s-1)}^{13}\right)+\xi^{2} R^{2} b_{2}^{\alpha} b_{\alpha \lambda}\left(\tau_{(s-2)}^{23}+\tau_{(\delta-1)}^{23}\right)-\zeta R b_{2 \lambda} \tau_{(\beta)}^{32}\right]+$ $\left.+F_{13}^{3 \lambda(0)} a_{1 \lambda} \tau_{(s)}^{31}-\zeta R b_{1 \lambda} \tau_{(s-1)}^{31}\right]+\ldots+F_{13}^{\lambda_{3}(k)}[\cdots]_{(s-k)}+\ldots$
${ }^{1 / 2} R^{-1}\left[\partial u_{2}^{(s)} / \partial \xi_{6}-\partial_{2} W^{(s-2)}+R b_{2}^{1} u_{1}^{(s-2)}+R b_{2}^{2} u_{2}^{(1-1)}-\right.$
$\left.-R \zeta\left(b_{2}^{1} \partial u_{1}^{(s-2)} / \partial \zeta+b_{2}^{2} \partial u_{2}^{(s-1)} / \partial \zeta\right)\right]-1 / 2 \zeta b_{\lambda}^{\lambda}[\cdots]_{(s-1)}+1 / 2 \sigma^{2} R K[\cdots]_{(\rho-2)}=$
$=F_{33}^{\lambda 3(0)}\left[a_{1 \lambda} \tau_{(8-1)}^{13}-2 \zeta R\left(b_{1 \lambda}{ }^{\tau}\left(\frac{13}{13}\right)+b_{2 \lambda^{\tau}} \tau_{(8-1)}^{23}\right)+a_{2 \lambda^{\tau}(t)}^{23}+\right.$
$+{ }_{0}^{2} R^{2}\left(b_{1}^{\alpha} b_{\alpha \lambda} \tau_{(s-3)}^{13}+b_{2}^{\alpha} b_{\alpha \lambda}{ }^{\tau}(3-2)\right]+F_{23}^{3 \lambda(0)}\left[a_{1 \lambda} \tau_{(2-1)}^{31}-\right.$
$\left.-\zeta R\left(b_{1 \lambda} \tau_{(s-2)}^{31}+b_{3 \lambda} \tau_{(0-2)}^{32}\right)+a_{2 \lambda} \tau_{(1-1)}^{32}\right]+\ldots+F_{2 \beta}^{\lambda s(k)}\left[\left.\cdots\right|_{(0-k)}+\ldots\right.$
$R^{-1}\left\{\partial_{1} u_{1}{ }^{(s)}-R\left(\Gamma_{11}{ }^{1} u_{1}{ }^{(s-1)}+\Gamma_{11}{ }^{2} u_{2}{ }^{(s)}\right)+b_{11} R W^{(s-1)}-\zeta R\left[b_{1}^{1}\left(\partial_{1} u_{1}{ }^{(s-1)}-R\left(\Gamma_{11}{ }^{1} u_{1}{ }^{(s-2)}+\right.\right.\right.\right.$ $\left.\left.\left.\left.+\Gamma_{11}^{2}{ }_{2}{ }_{2}^{(s-1)}\right)+R b_{11} W^{(s-2)}\right)+b_{1}^{2}\left(\partial_{1} u_{2}^{(s)}-R\left(\Gamma_{12}^{1} u_{1}^{(s-s)}+\Gamma_{19}^{2} u^{(s-2)}\right)+R b_{21} W^{(s-2)}\right)\right]\right\}-$

$$
-\zeta b_{\lambda}^{\lambda}\{\cdots\}_{(s-1)}+\zeta^{2} R K\{\cdots\}_{(s-2)}=F_{11}^{33(0)} \tau_{(k)}^{33}+\ldots+F_{11}^{33}{ }_{(k)}^{(k)} \tau_{(s-k)}^{33}+\ldots
$$

$$
\cdots+F_{11}{ }^{\lambda_{\mu}(0)}\left[a_{v \lambda} a_{v \mu} \tau_{(s)}^{v \nu}-\zeta R\left(a_{v \lambda} b_{v \lambda}+2 a_{v \lambda} b_{v \mu}\right) \tau_{(\delta-1)}^{\nu v}+\right.
$$

 ${ }_{1 / 2} R^{-1}\left\{\partial_{2} u_{1}{ }^{(f-2)}-2 R\left(\Gamma_{12}{ }^{1} u_{1}{ }^{(d-2)}+\Gamma_{12}{ }^{2} u_{2}{ }^{(\Omega-1)}\right)+\partial_{1} u_{2}{ }^{(s)}+2 b_{12} R W^{(\beta-2)}-\right.$
$-\varepsilon R\left[b_{2}^{1}\left(\partial_{1} u_{1}^{(s-2)}-R\left(\Gamma_{11} u_{1}{ }_{1}^{(\theta-3)}+\Gamma_{1}{ }^{\mathbf{a}} u_{2}^{(s-2)}\right)+R b_{11} W^{(\theta-3)}\right)+\right.$ $+b_{2}^{2}\left(\partial_{1} u_{2}^{(s-1)}-R\left(\Gamma_{12}^{1 \mu_{1}}{ }^{(s-3)}+\Gamma_{12}^{2}{ }^{2}{ }_{2}^{(\delta-2)}\right)+R b_{21} W^{(s-3)}\right)+$ $+b_{1}^{1}\left(\partial_{2} u_{1}{ }^{(s-3)}-R\left(\Gamma_{12}^{1} u_{1}{ }^{(s-3)}+\Gamma_{12}{ }^{2} u_{2}{ }^{(s-2)}\right)+R b_{12} W^{(s-3)}\right)+$
$\left.+b_{1}^{2}\left(\partial_{2} u_{2}{ }^{(s-1)}-R\left(\Gamma_{22}{ }^{1} u_{1}^{(s-3)}+\Gamma_{22}^{2} u_{2}^{(s-3)}\right)+R b_{22}\left[W^{(8-3)}\right)\right]\right\}-1 / 25 b_{\lambda}^{\lambda}\{\cdots\}_{(8-1)}+$

$$
+1 / 25^{2} R K\{\cdots\}_{(s-2)}=F_{12}^{33}{ }^{3(0)} \tau_{(s-1)}^{33}+\ldots+F_{12}^{33}{ }^{(k)} \tau_{(s-k-1)}^{33}+\ldots
$$

 $-\zeta^{3} R^{3} b_{v \lambda} b_{v}^{E} b_{\mu \Sigma} \tau_{(\mathrm{g}-4)}^{\sim v}+a_{v \lambda} a_{n \mu} \mu_{(s)}^{\pi v}-\zeta R\left(a_{n \mu} b_{v \lambda}+2 a_{v \lambda} b_{n \mu}\right) \tau_{(v-1)}^{\pi v}+$
 $R^{-1}\left\{\hat{\partial}_{2} u_{2}^{(s)}-R\left(\Gamma_{22}^{1} u_{1}^{(s-1)}+\Gamma_{22}{ }^{2} u_{2}^{(s)}\right)+b_{22} R W^{(s-1)}-R \zeta\left[b_{2}^{1}\left(\partial_{2} u_{1}^{(s-z)}+\right.\right.\right.$
$\left.+R\left(\Gamma_{12}^{1} u_{1}^{(\varepsilon-2)}+\Gamma_{12}^{2} u_{2}^{(s-1)}\right)+R b_{12} W^{(\varepsilon-2)}\right)+b_{2}^{2}\left(\partial_{2} u_{2}^{(s-1)}+R\left(\Gamma_{22}^{1 u_{1}}{ }^{(s-2)}+\right.\right.$ $\left.\left.\left.+\Gamma_{n 2}^{2} u_{2}^{(s-1)}\right)+R b_{n 2} W^{(s-2)}\right)\right]-\xi b_{\lambda}^{\lambda}\{\cdots\}_{(s-1)}+\zeta_{2}^{2} R K\{\cdots\}_{(s-2)}=F_{82}^{33(0)} \tau_{(s)}{ }^{83}+\ldots$ $\ldots+F_{s i}^{23(k)} \tau_{(s-k)}^{3 \beta}+\ldots+F_{23}^{\lambda \mu(0)}\left[a_{v \lambda} a_{v \mu} \tau_{(s)}^{v v}-\zeta R\left(a_{v \mu} b_{v \lambda}+2 a_{v \lambda} b_{v \mu}\right)^{\tau_{(v-1)}^{v v}}+\right.$

 $(\eta \neq \boldsymbol{v})$

When an orthogonal coordinate system 18 used for the middle surface of the shell, then

$$
a_{i j}=0, \quad \Gamma_{i j}^{r}=0 \quad(i \neq j \neq r \neq i)
$$

and the system of Equations (5.3) becomes considerably simplified.
The second consistent set of r is given by

$$
\begin{gathered}
\left(\tau^{11}, \tau^{22}, \tau^{33}, \tau^{13}, \tau^{31}\right) \rightarrow r=x, \quad\left(\tau^{12}, \tau^{21}, \tau^{23}, \tau^{32}\right) \rightarrow r=-1 \\
\left(u_{1}, W\right) \rightarrow r=x-1, \quad u_{2} \rightarrow r=x-2
\end{gathered}
$$

Corresponding to this set there is also a sequence of systems of equations, obtained in the manner described above. In view of their cumbersomeness, only the leading system of equations is given

$$
\begin{align*}
& \partial_{1} \tau_{(0)}{ }^{11}+\partial \tau_{(0)}{ }^{31} / \partial \zeta=0, \quad \partial_{1} \tau_{(0)}{ }^{12}+\partial_{2} \tau_{(0)}{ }^{22}+R\left(\Gamma_{21}{ }^{1}+2 \Gamma_{28}^{2}\right) \tau_{(0)}{ }^{22}+R \Gamma_{11}{ }^{2} \tau_{(0)}{ }^{11}- \tag{5,4}\\
& -R b_{1}^{2} \tau_{(0)}{ }^{13}+\partial \tau_{(0)}{ }^{32} / \partial \zeta_{\zeta}=0, \quad \tau_{(0)}{ }^{31}=\tau_{(0)}^{13}, \quad \partial_{1} \tau_{(0)}{ }^{13}+\partial \tau_{(0)}{ }^{33} / \partial \xi_{0}=0 \\
& \tau_{(0)}{ }^{32}=\tau_{(0)}{ }^{23}-\zeta R b_{1}^{2} \tau_{(0)}{ }^{13}, \quad c_{12} \tau_{(0)}{ }^{12}+c_{21} \tau_{(0)}{ }^{21}-\zeta R\left[c_{21} b_{1}^{2} \tau_{(0)}{ }^{11}+c_{12} b_{2}^{1} \tau_{(0)}{ }^{22}\right]=0 \\
& -R^{-1} \partial W_{(0)} / \partial \zeta=F_{33}{ }^{33} \tau_{(0)}{ }^{33}+F_{33}{ }^{\lambda \mu}{ }^{(0)} a_{1 \mu} a_{1 \lambda} \tau_{(0)}{ }^{11}+F_{33}{ }^{\lambda \mu}{ }^{(0)} a_{3 \mu} a_{2 \lambda} \tau_{(0)}{ }^{22} \\
& { }^{1 / 2} R^{-1}\left[-\partial_{1} W^{(0)}+\partial u_{1}^{(0)} / \partial \zeta\right]=F_{13}^{3 \lambda(0)} a_{1 \lambda} \tau_{(0)}^{13}+F_{31}^{3 \lambda(0)} a_{1 \lambda} \tau^{\tau}{ }_{(0)}^{31} \\
& 1 / 2 R^{-1}\left[-\partial_{2} W^{(0)}+\partial u_{2}{ }^{(0)} / \partial \zeta+R b_{2}^{1} u_{1}{ }^{(0)}-R \zeta b_{2}^{1} \partial u_{1}{ }^{(0)} / \partial_{\xi}^{\xi}\right]= \\
& =F_{32}^{3 \lambda(0)}\left(a_{2 \lambda} \tau_{(0)}^{23}-2 \zeta R b_{1 \lambda} \tau_{(0)}{ }^{13}\right)+F_{23}{ }^{3 \lambda}(0)\left(a_{2 \lambda} \tau^{\tau}(0)^{32}-\zeta R b_{1 \lambda} \tau_{(0)}{ }^{31}\right) \\
& R^{-1} \partial_{1} u_{1}^{(0)}=F_{11}^{33(0)} \tau_{(0)}^{33}+F_{11}^{\lambda_{\mu}(0)} a_{v \lambda} a_{\nu \mu} \tau_{(0)}{ }^{v \nu} . \\
& 1 / 2 R^{-1}\left[\partial_{2} u_{1}^{(0)}-2 R \Gamma_{12}^{1 u_{1}}{ }^{(0)}+\partial_{1} u_{2}^{(0)}+2 b_{12} R W^{(0)}-\zeta R b_{2}^{1} \partial_{1} u_{1}^{(0)}\right]=F_{12}{ }^{\lambda_{\mu}(2)} a_{v \lambda} a_{v i 2} \tau^{(0)}{ }^{\nu \nu}- \\
& -\zeta R F_{12}^{\lambda_{2}(0)}\left(a_{v \mu} b_{v \lambda}+2 a_{v \lambda} b_{\nu \mu}\right) \tau_{(0)}^{\nu v}+F_{12}^{\lambda \mu} a_{\nu \lambda} a_{\eta \mu \mu} \tau_{(0)}^{n v}+F_{12}^{33(1)} \tau_{(0)}^{83} \quad(\eta \neq v) \\
& F_{23}{ }^{33}{ }^{(0)} \tau_{(0)}{ }^{33}+F_{22}{ }^{2 \mu(0)} a_{\nu \lambda} a_{\nu \mu} \tau^{\prime}(0){ }^{v v}=0
\end{align*}
$$

If, in the preceding Equations (5.4), we let

$$
\begin{gathered}
F_{33}^{33(0)}=1 / E, \quad F_{33}^{\lambda \mu(0)}=-\sigma / E a^{\lambda \mu}, \quad F_{31}^{3 \lambda(0)}=[(1+\sigma) / E] \delta_{1}^{\lambda} \\
F_{32}^{3 \lambda(0)}=[(1+\sigma) / E] \delta_{2}^{\lambda} \\
F_{11}^{33(0)}=-\sigma / E a_{11}, \quad E_{12}^{\lambda \mu(0)}=[(1+\sigma) / E] \delta_{1}^{\mu} \delta_{2}^{\beta_{2}} \\
F_{11}^{\lambda \mu(0)}=[(1+\sigma) / E] \delta^{\lambda} \delta_{1}^{\mu}-\sigma / E a^{\lambda \mu} a_{11} \\
F_{12}^{\lambda_{\mu}(1)}=2 \sigma / E \zeta R b_{12} a^{\lambda \mu}, \quad F_{12}^{33(1)}=2 \sigma / E \zeta R b_{12}, \quad F_{23}^{33(0)}=-\sigma / E a_{22} \\
F_{22}^{\lambda \mu(0)}=[(1+\sigma) / E] \delta_{2}^{\lambda} \delta_{2}^{\mu}-\sigma / E a^{\lambda \mu} a_{22}, \quad a_{i j}=0 \quad(\text { for } i \neq i)
\end{gathered}
$$

then these equations reduce to the isotropic shell equations [1].
For the zerotn approximation, the second, fourth, sixth, ninth and eleventh equations in (5.3) comprise a self-contained subsystem in terms of $\tau_{(0)}^{12}, \tau_{(0)}^{21}, \quad \tau_{(0)^{*}}^{23} \quad \tau_{(0)^{*}}^{32}$ and $u_{2}^{(0)}$ corresponding essentially to the classical problem concerning torsion or an anisotropic bar about the ξ^{2}-axis. The first, third, fourth, seventh, eighth, tenth and twelfth equations in (5.4) comprise a self-contained subsystem in terms of $\tau_{(0)}^{11}, \tau_{(0)}^{22}, \tau_{(0)}^{33} \tau_{(0)}^{13}, \tau_{(0)}^{31}, u_{1}{ }^{(0)}$
and $W^{(0)}$. These equations correspond essentially to the plane strain problem in the $\xi^{1} \sigma$ plane.

The stress and strain states for an anisotropic shell may now be written
as the sum of two stress and strain states, obtained through the fundamental
and auxiliary iterative processes, and we require that the stresses thus obtained satisfy the boundary conditions (2.6). In addition to these boundary conditions, the stresses and displacements thus obtained must also satisfy the boundary constraints. Evidently, we aan combine the fundamental and auxiliary processes so as to satisfy the shell boundary conditions to any desired accuracy. This problem has been studied in detail in connection with plates [2], but requires separate examination for shells.

The author is grateful to S.A. Ambartsumian for his valuable suggestions, and thanks A.L. Goldenvenveizer for reviewing this work.

BIBLIOGRAPHY

1. Gol'denveizer, A.L., Postroenie pribizhennoi teorii obolochek pri pomoshch1 asimptoticheskogo integrirovanila uravnenil teoril uprugosti (Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity). PNW Vol. 27, 4, 1963.
2. Gol'denveizer, A.L., Postroenie priblizhennoi teori1 1zgiba plastinki metodom asimptoticheskogo integrirovaniia uravnenil teorii uprugosti (Derivation of an approximate theory of a plate bending by the method of asymptotic integration of the equations of the theory of elasticity). PNY Vol.26, M8 4, 1962.
3. Green, A.E. and Zerna, W., Theoretical Elasticity, Oxford Clarendon Press, 1954.
4. Kochin, N.E., Vektornoe ischislenie 1 nachaia tenzornogo ischislenila (Vector Calculus and Introductory Tensor Calculus). M.-L., Gostekhizdat, 1934.
5. Ambartamian, S.A., Teoriia anizotropnykh obolochek (Theory of Anisotropic Shells). M., Fizmatgiz, 1961.
6. Gol'denveizer, A.L., Teorila uprugikh tonkikh obolochek (Theory of Thin Elastic Shelis). M. Oostekhizdat, 1953.
